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Q-fid: Quantum Circuit Fidelity Improvement with LSTM
Networks

Yikai Mao,* Shaswot Shresthamali, and Masaaki Kondo

The fidelity of quantum circuits (QC) is influenced by several factors,
including hardware characteristics, calibration status, and the transpilation
process, all of which impact their susceptibility to noise. However, existing
methods struggle to estimate and compare the noise performance of different
circuit layouts due to fluctuating error rates and the absence of a standardized
fidelity metric. In this work, Q-fid is introduced, a Long Short-Term Memory
(LSTM) based fidelity prediction system accompanied by a novel metric
designed to quantify the fidelity of quantum circuits. Q-fid provides an
intuitive way to predict the noise performance of Noisy Intermediate-Scale
Quantum (NISQ) circuits. This approach frames fidelity prediction as a Time
Series Forecasting problem to analyze the tokenized circuits, capturing the
causal dependence of the gate sequences and their impact on overall fidelity.
Additionally, the model is capable of dynamically adapting to changes in
hardware characteristics, ensuring accurate fidelity predictions under varying
conditions. Q-fid achieves a high prediction accuracy with an average RMSE
of 0.0515, up to 24.7×more accurate than the Qiskit transpile tool
mapomatic. By offering a reliable method for fidelity prediction, Q-fid
empowers developers to optimize transpilation strategies, leading to more
efficient and noise-resilient quantum circuit implementations.

1. Introduction

By using quantum computers that exploit the principles and phe-
nomena of quantum mechanics, it may be possible to achieve
superpolynomial or even exponential speedups for traditionally
hard computing problems.[1] With quantum computers, in ad-
dition to representing the classical bits 0∕1 using its computa-
tional basis |0⟩ ∕ |1⟩, the qubits also have the ability to switch to
any desired basis, elevating the calculation to a higher dimension.
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Moreover, by entangling multiple qubits,
the computation can be performed simul-
taneously in an exponentially larger space.
However, present-day quantum com-

puters have a limited amount of qubits
with limited interconnectivity and very
short coherence lifetimes (in order
of milliseconds).[2,3] Furthermore, the
gate operations and readout are very
susceptible to external noise. To over-
come the noise limitations of today’s
machines, Noisy Intermediate-Scale Quan-
tum (NISQ)[4] offers a viable solution
by using error-mitigation techniques
to compensate for fragile qubits.[5–9]

To implement a quantum circuit on a
real NISQ processor, the circuit must be
mapped onto the available physical qubits
according to the hardware’s connectivity
map, a process called transpilation.[10,11]

There are several challenges during this
process: First, the qubits in one proces-
sor are not identical. Each of them has
unique physical properties that define their
noise characteristics, and they can change

depending on the time of operation. This causes the quantum
circuits to exhibit different noise performances when they are
placed on different qubits. Second, due to the limited qubit con-
nectivity, some quantum circuits need to be modified from the
original design before implementing on real hardware. For ex-
ample, adding SWAP gates to bring two physically distant qubits
together for a CNOT operation. Therefore, the accuracy of a quan-
tum circuit can get compromised even if it is placed on high-
quality qubits, due to the additional gate noise introduced by cir-
cuit transpilation.
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To overcome these challenges, we need a tool to accurately pick
a high-fidelity circuit-to-qubit layout from all the transpilation op-
tions. This way we can efficiently retrieve high-quality measure-
ments, without wasting quantum computing resources on test-
ing error-prone layouts. Additionally, a promising direction for
implementing large quantum circuits on NISQ processors is by
breaking them down into smaller circuits.[12,13] In this case, pick-
ing a higher-fidelity layout for the smaller circuit is even more
important because it will eventually affect the final output for the
full circuit.
One such tool to find a high-fidelity layout is mapomatic, built

within the Qiskit transpiler.[14] mapomatic estimates fidelity by
accumulating the individual gate error rates, obtained from the
Randomized Benchmarking (RB) experiments.[15] This approach
has some severe limitations. For example, the RB experiments
must be performed frequently to keep the error rates up to date.
Also, the noise model of a full quantum circuit is more complex
than the accumulation of the individual error rates.[16] Due to
these limitations, mapomatic cannot estimate the fidelity accu-
rately and it only gives the relative performance comparison for
a set of transpilations.
In this work, we present a practical metric: d-R2, that intu-

itively represents the fidelity of the output distribution from a
quantum circuit. Here, fidelity refers to the computational accu-
racy of a quantum circuit/gate (a measurement of how closely
the actual output of the quantum circuit matches the expected
output), which is different from the qubit state fidelity (a quan-
tification of the overlap between two states). Using thismetric, we
then develop an LSTM-based system: Q-fid, to accurately predict
the fidelity of a quantum circuit. It eliminates the need for fre-
quent RB experiments by actively learning qubit/gate operations
from historical circuit execution data, without any separate input
of system calibration parameters or error rates. Traditionally, a
NISQ circuit requires hundreds to thousands of shots on a real
processor to statistically estimate its correct output. With Q-fid,
we can choose to only execute circuits that have higher fidelity
and obtain the solution with fewer shots, thus saving precious
quantum computing resources.
The contributions of this work are listed below:

1. We propose a simple and intuitive method to model a quan-
tum circuit using text. Thismethod can be applied to any gate-
based quantum processor and enables feeding the quantum
circuits directly into an LSTM neural network.

2. We present the discrete coefficient of determination (d-R2) to
evaluate the noisy output distribution of a quantum circuit.
d-R2 uses the uniform distribution as the worst-case output,
offering a reasonable baseline for comparing NISQ algorithm
fidelities.

3. We show that LSTM is effective in learning the error proper-
ties of a qubit and a quantum gate. The trained system, Q-fid,
can predict the performance of a quantum circuit without any
separate input of hardware calibration data or gate error rates.

4. We provide a framework to use LSTM for on-the-fly quantum
circuit fidelity estimation, including the architecture of the
neural network, how to build the dataset using Randomized
Benchmarking, and the training workflow.

5. Experiments using real NISQ algorithms show that because
Q-fid can accurately predict the d-R2 score of quantum cir-

cuits, we can retrieve more high-fidelity, usable transpilations
than mapomatic from a large set of transpiled circuits.

2. Background

2.1. NISQ Circuits and Processors

In a gate-based quantum computer, the quantum bits (qubits)
are manipulated by a sequence of quantum gates as described by
the quantum circuit (QC).[18] These gates change the state of the
qubit and the transformations can be expressed by unitary matri-
ces, i.e., the computation is reversible. Figure 1 shows a sample
implementation of the Bernstein–Vazirani Algorithm[19] divided
into three stages. 1) State preparation: The qubits are initialized
into the superposition state |− + +⟩ from |000⟩. 2) Computation:
Once initialized, the quantum computation (CNOT as in this ex-
ample) is performed. 3) Measurements: The qubits are returned
to their original basis and measured into the classical registers
c1c0 to store the output.
NISQ processors have limited qubit availability, both in terms

of qubit quantity and quality.[4] Figure 2a gives the architecture of
the 7-qubit quantum processor ibm_nairobi along with three ma-
jor forms of possible error: readout, single-qubit error, and CNOT
error. The qubit quality is commonly characterized by their T1∕T2
constants. T1 is called the coherence time and T2 is the decay
time, which describes how long a qubit relaxes to the ground
state and how long it can hold its phase. However, as shown in
Figure 2(b), because qubits are very sensitive to multiple sources
of noise, their T1∕T2 constants can fluctuate significantly, and it
is hard to predict which physical qubit is more stable than others
at a given time.

2.2. Circuit Transpilation

Due to the limited connectivity of current NISQ processors, it is
not always possible to map a QC onto the processor directly.[20]

For example, the physical CNOT links exist only between the
neighboring qubits in Figure 2a. So if a QC requires a CNOT gate
between qubit 0 and qubit 3, additional operationsmust be added
to the QC to compensate for themissed connection. This process
of translating a hardware-agnostic QC description to implement
in a given hardware platform is referred to as transpilation.
To perform a long-distance CNOT gate in a superconducting

quantum computer like ibm_nairobi, the transpiler can insert
SWAP gates to switch the position of the nonadjacent physical
qubits to use the existing CNOT links.[21] However, in addition to
connectivity restrictions, real quantum processors also have lim-
ited single-qubit gate availability. For example, ibm_nairobi only
supports four single-qubit gates: ID, RZ, SX, X. Therefore, To per-
form a single-qubit operation like the Hadamard gate, the tran-
spiler will also need to decompose the operation into the gates
available in the processor.

2.3. Randomized Benchmarking

Randomized Benchmarking (RB)[15,22] is an experiment to esti-
mate the error rates of the set of common quantum gates, usu-
ally called the Clifford gates. For IBMQ devices, this Clifford gate
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Figure 1. Bernstein–Vazirani Algorithm. The expected output is q1q0 = |10⟩ (q2 is not measured). Output distribution after running the circuit for 1,024
times on real hardware (ibm_nairobi) is plotted on the right, the correct state |10⟩ has been measured 937 times, but the wrong measurements |00⟩ and|11⟩ also appears in the distribution due to noise.

Figure 2. a) Error map of ibm_nairobi on Dec. 9, 2022, generated by the IBM Q platform.[17] b) T1∕T2 fluctuation of the 7 physical qubits inside
ibm_nairobi. 100 data points were collected from Aug. 25 to Dec. 18, 2022. Note that data is not continuous due to scheduled/unscheduled system
maintenance, for example around Nov. 1.

group includes [X, Z, P, H, CNOT, CZ, SWAP].[23] Based on the
reversible principle of quantum gates, the RB experiment first
generates a QC containing randomquantum gates in the Clifford
group, then it calculates a complementary gate sequence that can
reverse the computation performed in the first QC. An example
RB circuit is given in Figure 3. By applying the two generatedQCs
back-to-back, the full circuit is equivalent to an identity operator
so ideally any qubits involved in this circuit should never change
their states when measured at the end.
However, when executing an RB circuit on a NISQ processor,

it is possible that the qubits cannot return to their initial state
due to the noisy nature of the hardware. Therefore, by repeatedly
running RB circuits and measuring the qubit outcomes, we can
estimate the average fidelity of the processor, and use that infor-
mation in turn to predict the gate error rate, either for 2-qubit
gates or single-qubit gates.

2.4. Long Short-Term Memory Network

Neural Networks (NN) have demonstrated state-of-the-art perfor-
mance in various tasks including Computer Vision (CV) and Nat-
ural Language Processing (NLP). Among numerousNN architec-
tures, Long Short-term Memory (LSTM) networks[24] have been
a popular choice for tasks related to time series processing, for
example, weather forecasting and sentiment prediction.
We leverage the ability of LSTMs to learn temporal relation-

ships in sequential data to estimate circuit fidelity. It is very easy
to see that quantum circuits are essentially sequential gate opera-

tions applied on qubit(s). There is an inherent temporal sequence
in the execution of the circuit on qubits. Furthermore, the fidelity
of the entire circuit not only depends on the individual gate/qubit
characteristics but also on how they interact with each other as
the circuit progresses toward completion, much like words in a
sentence or notes of a musical score. Since LSTMs are trained
to recognize these temporal relationships, we use them to esti-
mate circuit fidelity in our work. To our knowledge, this is the
first work that uses LSTM for fidelity estimation.
As Figure 4 shows, the x-axis can be used to indicate the

timesteps of a QC from start to end, with each timestep mod-
eled as a “QC layer” containing all the gates in the y-axis. The
layers act on the same set of qubits and have fixed widths, so
the QC can be described as a 2D time series with its width equal
to the number of qubits in the circuit, and its length equal to
the number of layers (sometimes referred to as the depth) of
the circuit.

3. Proposed Q-Fid Framework

3.1. Framework Description

Q-fid is an LSTM network that takes a QC as input and predicts
the fidelity of its output distribution. Inspired by one of the most
popular LSTM applications, Sentiment Analysis,[25] the workflow
of Q-fid is very similar to the workflow of many common NLP
tasks. In these tasks, the LSTM takes a sentence as input and
gives a prediction based on different objectives and contexts. For
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Figure 3. Example of a Randomized Benchmarking circuit. The first part is the randomly generated Clifford gates, followed by the calculated reversal
gates. The final measurement should be |00⟩ if no errors occur.

Figure 4. Quantum circuit placed in a coordinate system with the y-axis as qubit/classical bit, and the x-axis as time. It can be viewed as the qubits being
manipulated through each timestep from the left to the right on the time axis.

example, translate the sentence or guess the sentiment. Although
every individual word has its own definition, once combined to-
gether, they become elements of a single sentence where the
meaning of the sentence must be inferred from the relationship
between all of the words, i.e., the contexts.
This concept fits surprisingly well when applied to a QC: Al-

though every individual quantum gate has its own operation and
noise characteristics, once combined together, they become ele-
ments of a single circuit where the computation and fidelity of the
qubits must be measured after all quantum gates have been ex-
ecuted. Similar to a sentence where different orders of the same
words can express different sentiments, the same set of quantum
gates can perform different computations and express different
fidelity depending on their order in a circuit. Q-fid uses LSTM to
catch this long-term temporal dependence and noise characteris-
tics inside a QC.
At the core of the proposed Q-fid framework is an LSTM net-

work with a lightweight architecture. The input layers first per-
form general pre-processing of the input QCs, then they are
passed into the LSTM layer to extract long-term and short-term
noise dependencies between the gates inside the QC. Finally,
the output from the LSTM layer is passed into a series of Fully-
Connected layers to generate the final prediction of the circuit
fidelity. We use a data-driven approach to train the Q-fid system,
and the noise characteristics of the hardware are approximated by
the 700 000+ parameters inside the LSTM network. The number
of input neurons is decided by the number of qubits of the quan-
tum processor. In other words, a larger quantum processor will
have a larger Q-fid neural network with more inputs attached to
it. An overview of Q-fid’s LSTM architecture is shown in Figure 5

from (g) to (I).
A distinctive feature of Q-fid is that it does not require any ex-

plicit input of the processor’s calibration data (T1∕T2 frequency,
etc.) to make predictions, since the LSTM infers the noise char-
acteristics from the input QC during training. This hardware-
agnostic feature gives Q-fid several advantages over the other
calibration-based prediction systems. First, because the hardware
descriptions are abstracted away, Q-fid can work with any gate-
model quantum computer regardless of whether the qubits are
superconducting or trapped ion. Second, since the user does not
need to specify any device calibration data, Q-fid can be trained
dynamically during regular workload and adapts to the ever-
changing device characteristics, all without interruptions caused
by calibration or maintenance jobs.

3.2. Discrete Coefficient of Determination (d-R2)

The LSTM updates its parameters by comparing the differences
between the true output probability distribution of the QC and
the observed output distribution. We thus need a single metric
that represents this difference so that we can feed it into the loss
function of the LSTMnetwork. In this paper, we apply amodified
version of the Coefficient of Determination (R2) as our metric for
evaluating noisy QC fidelity. R2 is commonly used in regression
analysis to show the goodness of fit,[26] where R2 = 1 indicates a
perfect fit and R2 = 0 indicates that the fitted line does not repre-
sent the original data at all.
Recent works[11,27] use the Probability of Successful Trials

(PST) as a metric to quantify the performance of a noisy QC,
which is defined as the ratio of the number of successful
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Figure 5. Overview of Q-fid’s workflow. The first stage is input preparation (a, b, c), where the QCs are compressed and mapped to their corresponding
text label. The compression causes the gates to stack visually but they are executed individually on hardware because the qubits are not physically
connected (as shown in Figure S4a, Supporting Information). The second stage is tokenizer training (d, e), the tokenizer will look through all the QCs in
the dataset and assign each text label with an integer according to their appearing frequency. After the tokenizer is trained, it will use its internal dictionary
to translate all of the QCs in the dataset to an integer representation, which is called tokenization (f). Q-fid’s neural network uses embedding (g) and
LSTM (h) layers to encode the integer labels and then extract sequential and relationship information from the QC, each prediction (i) is associated with
one timestep in the QC. After the final timestep, the output will be the fidelity prediction of the full QC, represented as a d-R2 score.

Figure 6. Output distributions after executing the QC in Figure 1 with 1,024 shots using the Qiskit Aer simulator with varying noise intensity. The base
error rates for gates, measurements, and reset are set as 0.05n, 0.1n, and 0.03n. n is the noise multiplier where ×0 means noise-free and ×10 is the
maximum possible value. The comparison of three QC fidelity metrics is shown below the bar graph, where 1 means perfect circuit fidelity. Panel (a)
is the noise-free output, the correct output state should be |10⟩. Panels (b) to (f) are the outputs under different noise multiplier values. The output in
Panel (d) is a uniform distribution, which gives zero information on which state might be the correct state. Panel (f) is considered as a faulty output,
the circuit is not doing the intended quantum operations so the wrong states are appearing more than the correct state.

trials to the total number of trials. Although PST is easy to cal-
culate, it does not give the user enough information to analyze
the circuit. For example, Figure 6e shows a distribution where
PST gives a fidelity score of 0.14. However, the user cannot dis-
tinguish whether this low fidelity is caused by |00⟩ or |10⟩, due to
their similar measurement counts. Other metrics have been pro-
posed to replace PST, for example, the Quantum Vulnerability
Factor (QVF)[28] and the Total Variation Distance (TVD).[29] How-
ever, they do not offer a clear definition when multiple correct

states are expected, which often happens for common NISQ al-
gorithms like QAOA[30] and VQE.[31]

Our modified version of R2 is called discrete-R2 (d-R2). Com-
pared with the other metrics, d-R2 has two important features
that make it suitable for NISQ fidelity analysis. First, it takes all
the states in the distribution into consideration. So in addition
to checking how well the correct states are standing out, d-R2

also penalizes wrong states when they should not appear in the
output distribution, which makes it work well with algorithms

Adv. Quantum Technol. 2025, 2500022 2500022 (5 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 7. Fidelity metrics comparison when different noise multiplier val-
ues are applied on the circuit in Figure 1. Note that d-R2 can go to the
negative region if the bounding condition in Equation (1) is removed.

that output multiple correct states. Second, d-R2 is a measure-
ment of closeness to the uniform superposition, which gives the
user d-R2 = 0 as in Figure 6d. Because the output distribution of
noisy QCs can rapidly converge to the uniform distribution,[32–35]

we think a practical fidelity metric should clearly recognize this
worst-case distribution for the user.
A uniform superposition as in Figure 6d does not give any

useful information about which state(s) should be the correct
state. However, PST and QVF will still show fidelity scores of
0.26 and 0.50. Since every possible output state has equal mea-
surement opportunity, the user can just count the number of
qubits in the circuit and randomly pick some states as the output,
which invalidates the purpose of executing the quantum circuit
in the first place. Sometimes the output distribution fits worse
to the expected distribution than a uniform superposition, as in
Figure 6e,f. These distributions are caused by defective hardware
operations since the error rates for measurements in those QCs
are already over 0.5 (0.7 in (e) and 0.9 in (f)). Because such output
distribution is faulty and extremely misleading to the user, they
should not be used to interpret the QC. We use the bounding
condition SSR < SST to limit d-R2 ≥ 0 for this practical purpose.
However, if the user wants to quantify this faulty distribution,
it is still possible to remove the bounding condition and have a
negative d-R2 score, as shown in Figure 7.
To calculate d-R2, we first calculate two Sum of Squares (SS):

SSresidual = SSR =
2n∑
i=0

(
Yi − yi

)2

SStotal = SST =
2n∑
i=0

(
Yi −mean(Y)

)2 (1)

Here, n is the number of measured qubit(s), Y is the distri-
bution containing all the measurement counts from the noise-
free output, and y is the distribution containing all the measure-
ment counts from the noisy output. For example in Figure 6b,
Y would be (0, 0, 1024, 0), so mean(Y) is 256, and y would be
(137, 17, 789, 81). Note that when calculating the subtractions, the

Table 1. discrete-R2 values and proposed interpretations.

d-R2 Interpretation

= 1 output is perfect, same as if there was no noise.

> 0.7 to ≤ 1 output is good, the circuit has high fidelity.

> 0.5 to ≤ 0.7 output quality is fair, contains noticeable noise.

> 0.3 to ≤ 0.5 output contains significant noise, interpret with caution.

> 0 to ≤ 0.3 output is extremely noisy, do not use.

= 0 output is no better than a uniform superposition.

indices of Y and y must be aligned so that the measured states
match each other. Then d-R2 can be obtained as:

d-R2 =

{
1 − SSR

SST
, if SSR < SST

0, otherwise
(2)

Compared with other metrics empirically, the fixed definition
of d-R2 = 0 as the uniform superposition gives finer granularity
for calculations and allows the fidelity interpretations to stay in-
variant when applied to different circuits. Based on the observa-
tions during our experiments and the analysis in Figure 6, we
offer the recommended interpretations for different d-R2 values
used in this paper in Table 1.
When the QC is designed to output a uniform superposition,

like the Quantum Random Number Generator (QRNG),[36] the
output with no noise and the output with extreme noise can be
the same (both are uniform superposition), since heavy noise will
cause the output distribution to eventually converge into the uni-
form distribution.[32–35] In this case, the output is both perfectly
correct and incorrect at the same time, so the definition of fidelity
contradicts itself, causing d-R2 to become undefined by design
due to SST = 0.

3.3. Text-Based Representation of Quantum Circuits

We represent QC in text string formats that are suitable for feed-
ing into the LSTM networks. The QC is first compressed to its
true depth, because qubits that are not physically connected in
hardware can execute gates in parallel. Then, Q-fid uses a sim-
ple and effective protocol to label the gates inside a QC: a short
string describing the gate function followed by the qubit index
describing where the gate is executed. For example, a Hadamard
gate placed on qubit 2 is labeled as h2, a CNOT gate with con-
trol on qubit 0 and target on qubit 3 will be cx03. This repre-
sentation also reflects the layout of the device. For ibm_nairobi,
there will never be a label called cx34, because this connection
does not exist in the hardware. This helps the LSTM network to
learn the processor’s layout implicitly. Our text format is very sim-
ilar to many existing quantum programming languages includ-
ing openQASM and Qiskit, so preparing the text representation
of an existing QC for Q-fid is straightforward:

1) A tokenizer reviews the full QC dataset and builds a dictionary
that maps each text label of a gate to a unique integer. The
labels are ranked according to the frequency they appear in
the circuit, with the most common appearing label mapped

Adv. Quantum Technol. 2025, 2500022 2500022 (6 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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to 1. A special label in Q-fid is none, which means the qubit
is staying idle. This label is important because the qubit can
decay and become noisier even when no gates are applied. An
example of this workflow is shown in Figure 5 from (a) to (f).

2) For a large QC dataset, the depth of the individual QCs can
vary a lot. To improve the accuracy and efficiency of LSTM
training, it is better to fix the number of time steps in the
dataset. Once themaximumnumber of time steps is set, all of
the integer-based QC vectors are either truncated or padded
to the same depth. The reason for the tokenizer to start from 1
is that 0 is reserved as the padding element, so that the LSTM
can safely skip it. We follow the common practices in NLP[37]

to use pre-padding and post-truncation.
3) After all the text labels are converted to integers, every QC

in the dataset is now a dense vector. However, the integers
do not possess any relationship or similarity information be-
tween different gates, so it is hard for the LSTM to learn
the effect of interconnected quantum gates. This problem is
solved by using word embeddings, a technique of using a
higher dimension fixed-length vector to replace the integer
encoding.[38] The values of this embedding vector are trained
with the LSTM in parallel, which helps Q-fid capture more
detailed information from the QC. The embedding layers are
shown in Figure 5g.

This tokenization process can represent a QC in human-
readable text format and effectively retains vital circuit structural
information, thereforemaking it possible for neural networks de-
signed for time-series data to process a QC directly. More impor-
tantly, it enables existing NLP neural networks to perform analyt-
ical tasks on QCs without complex modification. The training of
the tokenizer is expressed in Algorithm 1, and the inference pro-
cess is described in Algorithm 2, all as part of the full Q-fid work-
flow.

3.4. Training Circuits and Dataset for Q-fid

Training Q-fid requires a large QC dataset that is also diversified
in circuit depth and width, as the relationship between fidelity
and circuit size is not necessarily linear. In this work, we utilize
the RB circuits to efficiently create a QC dataset to train Q-fid.
Because the gates in RB circuits are randomly generated, they
span over all different types of gates, depths, widths, and qubit
interactions. This provides the required diversity of width and
depth for the dataset. In our generated ibm_nairobi dataset, all the
available gates [X, RZ, SX, CNOT, Measurement] are sufficiently
covered on all possible qubits, resulting in 40 total unique text
labels plus the placeholder none label. The most common gate
label in the dataset is rz3 with 2, 341, 798 appearances, and the
least common label is m4 with 29, 528 appearances.
Using RB circuits in training provides many benefits, one of

the advantages is that it greatly simplifies fidelity calculation. Ev-
ery RB circuit is by definition equivalent to an identity operator,
so if the qubits are initialized to |0… 0⟩, we know the ideal out-
put states must also be |0… 0⟩. This means that in order to cal-
culate the ground-truth training labels (d-R2 scores) for an RB
circuit, we only need to obtain one noisy output distribution of
the circuit. In addition, most of the computing complexity for

Algorithm 1 Q-fid Training Workflow.

Q-fid Training

1: Input: quantum circuit dataset

2: ▹ circuits and corresponding noisy output

3: Output: trained Q-fid system

Step 1: Input Preparation

4: for each QC in dataset do

5: noisy_fidelity(d-R2)← ideal noise-free output

6: ▹ compare noisy/noise-free output to calculate training label

7: compressed_QC← compress(QC)

8: ▹ combine parallel gates to the same circuit layer

9: text_QC← gate_to_text(compressed_QC)

10: ▹ map gates to corresponding text label

11: end for

Step 2: Tokenizer Training

12: tokenizer← initialize_tokenizer()

13: for each text_QC in dataset do

14: trained_tokenizer← tokenizer.fit_on_texts(text_QC)

15: ▹ train tokenizer on all circuits to generate dictionary

16: end for

Step 3: Tokenization

17: tokenized_QCs← []

18: for each text_QC in dataset do

19: tokenized_QC← trained_tokenizer.texts_to_int(text_QC)

20: tokenized_QCs.append(tokenized_QC)

21: ▹ translate QC to integer representation

22: end for

Step 4: Q-fid Training

23: for each tokenized_QC in tokenized_QCs do

24: embedded_QC← embedding(tokenized_QC)

25: ▹ apply embeddings to integer labels

26: lstm_output← LSTM(embedded_QC.concat())

27: ▹ process through LSTM

28: fidelity_prediction← fully_connected(lstm_output)

29: ▹ final fidelity prediction

30: model.fit(noisy_fidelity)← fidelity_prediction

31: ▹ fit model against noisy output fidelity score

32: end for

33: Return trained_Q_fid

generating RB circuits comes from calculating the final circuit
block that reverses the previous operations, and it can be calcu-
lated efficiently in polynomial time, proved by the Gottesman–
Knill theorem.[39]

4. Experimental Section

4.1. Dataset

Two datasets were created based on two real IBM Quantum pro-
cessors, ibm_nairobi and ibmq_montreal. TheQCswere randomly
generated according to the RB protocol, with the length of the
RB sequence ranging from 1 to 5. Also, the number of active

Adv. Quantum Technol. 2025, 2500022 2500022 (7 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Algorithm 2 Q-fid Inference Workflow.

Q-fid Inference

1: Input: Quantum circuits (QCs)

2: Output: Fidelity predictions of QC

Step 1: Input Preparation

3: for each QC in QCs do

4: compressed_QC← compress(QC)

5: text_QC← gate_to_text(compressed_QC)

6: end for

Step 2: Tokenization

7: tokenized_QCs← []

8: for each text_QC in text_QCs do

9: tokenized_QC← trained_tokenizer.texts_to_int(text_QC)

10: tokenized_QCs.append(tokenized_QC)

11: end for

Step 3: Q-fid Processing

12: for each tokenized_QC in tokenized_QCs do

13: embedded_QC← embedding(tokenized_QC)

14: lstm_output← LSTM(embedded_QC.concat())

15: fidelity_prediction← fully_connected(lstm_output)

16: end for

17: Return fidelity_prediction

qubits were changed when generating the RB circuits. For exam-
ple, even though ibm_nairobi was a 7 qubit processor, RB circuits
were generated that only require 1 qubit, 2 qubits, etc. The main
reason for doing this was because placing the QC on different
physical qubits on the same processor can yield different fidelity
due to noise andmanufacture variation.When the RB circuit only
requires 1 active qubit, the circuit could be placed on seven differ-
ent physical qubits on ibm_nairobi. This improves Q-fid’s ability
to learn the properties of individual qubits.
Due to the ever-changing nature of quantum errors, instead of

depending on a fixed noisemodel to predict the fidelity of a quan-
tum circuit, Q-fid was designed to actively learn the noisy output
results from a quantum processor and incorporate the gate/qubit
error parameters inside its hidden layers. During training, Q-fid
needs the fidelity (d-R2) score as the training label corresponding
to the input circuit. This fidelity score is calculated by comparing
the noisy output result to the theoretical noise-free result, which
means that if the noise characteristics for a particular processor
have changed, Q-fid will learn this change from the updated fi-
delity score and give new predictions based on the latest proces-
sor characteristics.
The ibm_nairobi QC dataset contains 103,500 circuits, and the

ibmq_montrealQC dataset contains 100 000 circuits. All of the cir-
cuits are transpiled and converted to a text-based representation
described in Section 3.3, then the noisy output results are cap-
tured using the Qiskit Aer simulator. We constrain the depth of
the circuits to be less than or equal to 500 because circuits deeper
than 500 have near-zero fidelity, as shown in Figure 8. After trim-
ming, the ibm_nairobi QC dataset has 82 644 circuits, and the
ibmq_montreal QC dataset has 91 386 circuits.

4.2. Model and Training

Two Q-fid models were built to test the two processors, the ar-
chitecture of Q-fid for ibm_nairobi is shown in Figure 9. Each
qubit has its own input neuron and they all have a length of
500, equal to the maximum QC depth of the dataset. The em-
bedding layer transforms every gate label into a 64D dense vec-
tor and they are all concatenated together to represent one input
timestep. The LSTM layer uses 256 memory units, followed by
three Fully-Connected layers. ReLU activation and Sigmoid acti-
vation were used for the final layer. The model for ibm_nairobi
contains 743 784 trainable parameters with seven input layers,
and the model for ibmq_montreal contains 7 403 004 trainable
parameters with 27 input layers. The model for ibmq_montreal
has mostly the same architecture, only changing the number of
input layers and adding the number of hidden units.
To demonstrate that no special modification is needed for ex-

isting LSTM architectures to analyze a quantum circuit, the orig-
inal implementation of LSTMwas picked with their standard for-
get/input/output gates by Hochreiter and Schmidhuber,[24] also
implemented the text tokenizer and the embedding layer using
the TensorFlow Keras API. The models run on a rack server with
two Intel Xeon Gold 6354 processors and the Nvidia A100 GPU.
The training workflow can be reproduced using the Jupyter Note-
book available online mentioned in Section 8. The models were
trained with a batch size of 32 and Adam optimizer for 20 epochs
using the MSE loss function, the training automatically termi-
nates if the loss does not improve for 5 continuous epochs. The
training, validation, and test split ratio is 7:2:1, loss was evaluated
on the validation set and pick the best-performing model on the
test set. On average, each epoch took 81s to train and the infer-
ence time per circuit was 0.48ms. The training curve for the two
models is shown in Figure 10, and Figure 11 shows the scatter
plot of real fidelity vs. predicted fidelity of Q-fid running on the
test set.

5. Results and Discussion

Based on the number of qubits, connection complexity, and al-
gorithm practicality, we picked 25 quantum circuits from the
QASMbench[40] NISQ benchmark suite to demonstrate the perfor-
mance of Q-fid. We compare our result with mapomatic, the lat-
est and default mapping tool of the Qiksit transpiler. mapomatic
predicts circuit fidelity and maps high-fidelity circuits onto the
quantum processor, the prediction is made by accumulating in-
dividual gate error rates of the circuit,[41] which has the same pre-
diction range and statistical meaning as d-R2: 1 predicts a per-
fect output distribution equivalent to the noise-free simulation,
and 0 predicts a distribution with maximum possible error rates,
equivalent to the uniform distribution. The circuits are executed
on the Qiskit Aer simulator[42] with a noise model that mim-
ics ibm_nairobi and ibmq_montreal. Section 5.1 demonstrates Q-
fid’s prediction performance on ibm_nairobi. Section 5.2 demon-
strates Q-fid’s ability to correctly find high-fidelity transpilation
layouts on ibmq_montreal. Section 5.3 demonstrates how Q-fid
adapts to ibm_nairobi’s device variance on different dates. The
four representative samples picked from the full result are:
Hidden Subgroup problem (hs4_n4),[43] Quantum Ripple Carry

Adv. Quantum Technol. 2025, 2500022 2500022 (8 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 8. Two QC datasets showing the fidelity of a QC decreases with increasing depth. The x-axis represents the indices of RB circuits ordered from
the shallowest to the deepest ones, with a vertical purple line indicating the cut-off point of depth = 500. The fidelity has a very large variance so the raw
data is plotted using a gray envelope and an orange average line.

Figure 9. Neural network architecture of Q-fid. FC stands for Fully-Connected layer. The number of input layers depends on the number of qubits inside
a processor. This figure shows the architecture for ibm_nairobi with 7 input neurons since it is a 7-qubit processor. The hardware qubit layout is shown
in Figure S4 (Supporting Information).

Adder (adder_n4),[43] Variational Ansatz (variational_n4),[44]

and Quantum Fourier Transform (qft_n4).[45]

5.1. Fidelity Prediction

Figure 12 demonstrates Q-fid’s prediction performance on
ibm_nairobi. For one given circuit, both Q-fid and mapomatic can
only give one static fidelity prediction. Under this circumstance,
comparing the performance betweenQ-fid and mapomatic using
the mean hardware execution fidelity results frommultiple trials
shows the effect of quantum noise and how the fidelity predic-

tion can provide a representative guideline. All the circuits used
in this experiment are not optimized for physical qubit layout,
so the logical qubits are placed on ibm_nairobi in numerical or-
der from physical qubit 0 to 6 and stay on the same layout for all
50 trials.
Because most of the test circuits are placed on the same

physical qubits, the variables in this experiment are the dif-
ferent quantum gates used in different algorithms. The re-
sults prove that Q-fid has learned the noise characteris-
tics of different quantum gates on the same physical qubit
from the training circuits. In contrast, the error rate based

Adv. Quantum Technol. 2025, 2500022 2500022 (9 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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mapomatic tends to give an underestimation, especially for
high-fidelity circuits.

5.2. Transpilation Optimizations

Figure 13 shows Q-fid’s ability to correctly find high-fidelity tran-
spilation layouts on ibmq_montreal. Since ibmq_montreal is a 27-
qubit processor, a circuit only using 4 physical qubits can have
many layout options depending on different transpilations. For
example, the hs4_n4 circuit has a depth of 34 and 13 CNOT gates,
and it has a total of 2,728 different layouts shown on the x-axis,
ranked from the highest fidelity layout to the lowest fidelity lay-
out. mapomatic relies on the latest hardware calibration data to
calculate the fidelity, and uses the relative fidelity differences to
find the high-fidelity layouts. In comparison, Q-fid achieves simi-
lar performance without explicit hardware calibration data input,
and gives better absolute fidelity prediction value so the user has
more potentially good layouts to pick from. Additionally, from the
full result in Figure S2 (Supporting Information), it shows that
mapomatic’s prediction is not sensitive to the layout variance of
the deep and complex circuits, which makes it a less preferable
metric for training neural networks.
In Section 5.1, the circuits are executed on fixed physical lay-

outs, so the objective is to test if Q-fid can learn the effects of dif-
ferent quantum gates when they are applied to the same physical
qubits. However, in this experiment, the same circuits are exe-
cuted with different layouts, so the new objective here is to test if

Figure 10. Training loss and validation loss for the two datasets. Train-
ing terminated on epoch 20 for ibm_nairobi, and on epoch 18 for
ibmq_montreal. The final validation loss is 0.150E-3 for ibm_nairobi, and
0.243E-3 for ibmq_montreal.

Figure 11. Scatter plot of real fidelity vs. predicted fidelity of Q-fid running
on the test set. The test set for ibm_nairobi contains 8265 circuits, and the
test set for ibmq_montreal contains 9140 circuits.

Q-fid can learn the noise characteristics when the same quantum
gates are placed on different physical qubits.

5.3. Noise-Adaptive Training

Figure 14 demonstrates how Q-fid adapts to ibm_nairobi’s device
variance on different dates. The same experiment in section 5.1 is
performed again, but the noise model of ibm_nairobi is changed
to Nov. 18, 2022, three days later than the first set of predictions.
The new noise model has a slightly worse fidelity performance
than the previous one, which is shown to the right of the blue
vertical line. For the new noise model, Q-fid’s prediction is 5.31×
more accurate than mapomatic on average, with the most accu-
rate one being 42.0× better.
We envision that Q-fid can be constantly learning in parallel

with the execution of QCs inside a quantum processor, so that it
can always give predictions based on the most recent hardware
characteristics. For this experiment, 100 additional RB circuits
are randomly generated according to Section 4.1, then executed
on ibm_nairobi with the new noise model. These new execution
data go under the same training process as described in Sec-
tion 4.2 to retrain Q-fid. For different processors, the number
of circuits needed for retraining might vary. However, because
Q-fid can use the output of any historical workload to update
its internal parameters, it can be updated directly and continu-
ously in parallel with the processor’s normal workflow. In con-
trast, mapomatic needs to use the latest gate error rates to give
updated predictions, which requires the processor to perform in-
dividual RB experiments for single-qubit gates, two-qubit gates,
and the subsequent data-fitting calculations.[15] This process in-
terrupts normal workflow and the prediction accuracy entirely
depends on how recently the calibration jobs are performed.

5.4. Summary

Our comparison shows that although mapomatic is doing well
in following the trend of fidelity degradation due to heavy noise,
it gives an underestimation which causes the user to mistak-
enly think the circuit is too noisy to execute, but the out-
put result will be relatively acceptable. An overview of the re-
sult comparison between the mean noisy fidelity and the pre-
dictions from Q-fid/mapomatic is shown in Figure 15. The
RMSE of Q-fid’s prediction compared with the mean noisy fi-
delity ranges from 0.003 to 0.182 with an average of 0.0515. On
the other hand, mapomatic’s fidelity estimation has an average
RMSE of 0.142, with a minimum RMSE equal to 0.0424 and a
maximum RMSE of 0.284. On the Quantum Walks algorithm
(quantumwalks_n2),[46] Q-fid’s prediction is 24.7× more accu-
rate than mapomatic. On ibmq_montreal, when finding the high-
fidelity layouts, Q-fid correctly finds the top 10% of high-fidelity
circuit layouts for all 25 algorithms. Within those top 10% of lay-
outs, Q-fid’s predicted fidelity has an average RMSE of 0.0252, up
to 32.8×more accurate than mapomatic.

6. Related Work

Randomized Benchmarking is one of the earliest experiments
developed to characterize quantum operation error rates,[15,22,47]

Adv. Quantum Technol. 2025, 2500022 2500022 (10 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 12. Q-fid’s fidelity prediction (purple) compared with mapomatic (orange) on ibm_nairobi. Due to the probabilistic nature of quantum noise,
the fidelity for the same circuit oscillates when executed with the same device noise model (gray). Each circuit is executed with 1024 shots to produce a
noisy output distribution, then the mean fidelity is calculated from 50 noisy distributions (x-axis) as d-R2. Q-fid accurately predicts the mean fidelity of
each circuit.

and remains the most commonly used tool for this purpose to-
day. The latest works focus on improving Randomized Bench-
marking to support more quantum operations,[48] and make the
experiment more flexible for larger circuits consisting of many
qubits.[49,50]

A QC must be carefully implemented on real hardware to re-
trieve useful measurements. Early research concentrated on cir-
cuit compilation techniques to improve the fidelity of the out-
put. For example, using gate scheduling to reduce the number of
physical quantum gates or rerouting the CNOT connections to
minimize SWAP gates.[51–54] Recently, the research direction has
shifted to hardware-specific optimization and noise-aware qubit
layout.[10,55–57] Due to the constantly changing device calibration
data, quantum circuits have to be transpiled according to the ar-
chitecture and noise characteristics of the processor in order to
achieve the best performance.
Fidelity estimation is an emerging research field in quan-

tum computing. Although it has been proved that estimating
the final fidelity from the QC itself is hard in general, many

works have demonstrated using quantum algorithms to attack
this problem and achieving exponential speedup.[58,59] Other ap-
proaches like statistical estimation and polynomial fitting were
also investigated.[60,61]

Using machine learning for fidelity estimation is still a very
new area of research.[61] proposed a shallow neural network to
directly estimate the fidelity of the quantum states, although the
quantum states are not prepared with a QC. For our work, we
focus on the holistic view of quantum states in circuit model
quantum computing. In Ref. [62], the viability of using ma-
chine learning to predict the state fidelity from circuit repre-
sentation was proved. This work utilizes a Convolutional Neu-
ral Network (CNN) for feature extraction and models the input
circuit using integer encoding. The CNN architecture is heavier
than our LSTM architecture, and the circuit-to-integer encoding
also requires one extra step to implement. In Q-fid, this encod-
ing is automatically handled by the text tokenizer.[63] also uses
a CNN for feature extraction, but the number of parameters for
a 3×3 circuit is almost 12× more compared with Q-fid’s LSTM

Adv. Quantum Technol. 2025, 2500022 2500022 (11 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 13. Q-fid’s fidelity prediction (purple) for different circuit layouts on ibmq_montreal. The x-axis is the index of layouts for the quantum circuit,
the y-axis shows different d-R2 fidelity score regions listed in Table 1. The order of the data is sorted from the highest fidelity layout to the lowest fidelity
layout according to the fidelity reported by ibmq_montreal (gray). Q-fid accurately tracks the fidelity variance of every layout for each circuit.

architecture, rendering future scalability issues. Recent works are
exploring different learning methods.[64] proposes a multimodel
deep learning method where they utilize two neural networks
to learn from the measurement modality and circuit-encoded
modality separately. In Q-fid, the QC is explicitly fed into the
neural network and the measurement information is implicitly
learned by the network through the corresponding d-R2 score.
Another work[65] implements the graph transformer for the same
fidelity prediction task, but since the input QC is modeled like an
image, a deep QC will produce a very long rectangle image and
the performance needs to be investigated.

7. Conclusion and Outlook

We present the Q-fid system to accurately predict the fidelity of
a quantum circuit running on a real NISQ processor. We show
that the performance of NISQ processors is easily affected by ex-
ternal noise, so with Q-fid’s fidelity prediction we can help save
quantum computing resources by optimizing circuit layout and
reducing execution shots. Q-fid uses LSTM to learn the noise

properties of the qubit and the relationship between quantum
gates, without the need for any separate input of hardware cali-
bration data and gate error rates. A novel method to model the
quantum circuits using text labels was presented, and the full
training workflow was introduced. We apply the d-R2 metric to
intuitively quantify the fidelity of a noisy quantum circuit. Based
on this metric, we also showed how to generate a training cir-
cuit dataset using the Randomized Benchmarking circuits. We
compare Q-fid’s performance with mapomatic, and the results
prove that Q-fid can effectively learn the characteristics of differ-
ent qubits, gates, and the structure of quantum circuits.
Future improvements of Q-fid can focus on the neural net-

work component. The structure of the neural networks can be
adjusted and optimized to use fewer layers of parameters, and
different tokenizer configurations can be investigated to see how
they affect Q-fid’s prediction accuracy.[66,67] Because the QC is
treated as text inputs in Q-fid, various new LSTM implementa-
tions or Recurrent Neural Network (RNN) architectures can also
replace the standard LSTM used in this work to improve per-
formance. The goal of Q-fid is to help enhance the usability of
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Figure 14. Q-fid’s fidelity prediction (purple) compared with mapomatic (orange) on ibm_nairobi. Again, the fidelity oscillates (gray) due to the proba-
bilistic nature of quantum noise. The first 50 trials (left of the blue line) are performed on Nov. 15, 2022, which is the same data as in Figure 12. The next
50 trials (right of the blue line) were performed on Nov. 18, 2022, which shows that ibm_nairobi’s performance is slightly worse due to different noise
patterns. Q-fid adapts to this new noise pattern and it only takes 100 new RB circuits to retrain.

Figure 15. Result comparison between the mean noisy fidelity from ibm_nairobi and the predictions from Q-fid/mapomatic, the mean fidelity for each
circuit is calculated from 50 noisy outputs as d-R2. The RMSE of Q-fid’s prediction compared with the mean noisy fidelity ranges from 0.003 to 0.182.
On the other hand, mapomatic’s prediction has a minimum RMSE of 0.0424 and a maximum RMSE of 0.284.

Adv. Quantum Technol. 2025, 2500022 2500022 (13 of 15) © 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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current NISQ devices, where the number of qubits is limited and
requires classical optimization to overcome noise problems. In
the future when fault-tolerant qubits are realized, we will likely
need more sophisticated metrics to evaluate the fidelity of QC
outputs, due to the exponentially growing problem space accom-
panied by the increase of qubit counts.

8. Data and Code Availability

The full results and raw data from Section 5 are available in
Figure S1, S2, S3 and Table S1, S2 (Supporting Information). The
layout of the computing devices and their characteristics at the
time of the experiments is available in Figure S4 and Table S3, S4,
S5 (Supporting Information). The datasets used for trainingQ-fid
are available at https://www.kaggle.com/datasets/ykmaoykmao/
Q-fid-datasets. The code for generating the datasets is available
at https://github.com/yikaimao/Q_fid.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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