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Abstract—DNNs are widely used but face significant compu-
tational costs due to matrix multiplications, especially from data
movement between the memory and processing units. One promis-
ing approach is therefore Processing-in-Memory as it greatly
reduces this overhead. However, most PIM solutions rely either
on novel memory technologies that have yet to mature or bit-
serial computations that have significant performance overhead
and scalability issues. Our work proposes an in-SRAM digital
multiplier, that uses a conventional memory to perform bit-parallel
computations, leveraging multiple wordlines activation. We then
introduce DAISM, an architecture leveraging this multiplier,
which achieves up to two orders of magnitude higher area
efficiency compared to the SOTA counterparts, with competitive
energy efficiency.

Index Terms—approximate computing, processing in-memory,
accelerator

I. INTRODUCTION

Deep Learning (DL) has gained widespread popularity in
recent years and become ubiquitous in many diverse ap-
plications, including daily tasks such as facial recognition,
and applications that require extensive training like language
models. As a result, many domain-specific accelerators have
been proposed to streamline and optimize the computations for
performance gains in terms of latency, energy, and chip area [1].
Typically, a large fraction of the computations for Deep Neural
Networks (DNNs) are general matrix multiplications (GEMMs)
and many accelerator designs have focused on accelerating
them.

One method is to approximate the computations for perfor-
mance gains by using approximate arithmetic [2] or reduced
precision [3]. These methods leverage the inherent error re-
silience of Neural Networks (NNs) to small computational
errors. It arises primarily due to parameter over-provisioning
and the independent distributed computations within each layer
of the NN.

Another direction for optimizing GEMMs is to use
Processing-In-Memory (PIM). Since matrix multiplication is
embarrassingly parallel, reading and transferring the data from
memory to the processor consumes a lot of power and bottle-
necks the entire computation pipeline [4], [5]. PIM solutions
perform computation directly in/near memory and thus mini-
mize this bottleneck [6], [7].
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As attractive as PIM may be, current solutions have severe
drawbacks that prevent their widespread adoption. For example,
resistive memory-based designs are very sensitive to device-
to-device variations and they also require conversion of data
between analog and digital domains, which further drives up the
energy cost and reduces throughput and accuracy. Furthermore,
such analog computation-based technology requires significant
changes in chip design and thereby incurs large design and
manufacturing costs [8], [9].

Another alternative is in-memory bit-serial computation
used, for example, by existing SRAM-based PIM technolo-
gies [10], [11]. As a consequence, this requires the data to
be reorganized in a bit-serial manner and incurs significant
overhead in both performance and complexity. While latency
issues from bit-serial operations may be alleviated through
pipelining, the area overhead and complexity cannot be over-
looked. Furthermore, since most of the existing computations
are optimized for bit-parallel operation, bit-serial hardware is
bound to lag behind in terms of efficiency while combining
these two types introduces additional complexity in designing
hardware. Finally, fundamental device- and circuit-level limi-
tations, such as the current carrying capacity of a metal wire,
also prevent bit-serial solutions to scale [12].

In this work, we propose a novel in-SRAM approximate
multiplier that brings the best of both worlds. Our multiplier
performs matrix multiplications in memory thereby reducing
the time and energy required for moving data. The mul-
tiplication is performed in a bit-parallel manner by using
multiple wordlines activation that approximates multiplication
with a simple bitwise OR, which is a perfect match to the
tight and regular layout of conventional SRAM technology.
The computational errors arising from this approximation are
acceptable as DNNs are quite resilient due to over-provisioned
parameters [13]. It is possible to implement our multiplier in
conventional SRAMs with minimal design modification and
thus making it easily adopted in existing systems. We also
propose DAISM - a DNN accelerator architecture that leverages
our novel in-SRAM approximate multiplier. Our evaluations
show that energy and performance gains can be obtained
compared to other existing baselines.

The main contributions of the paper are:

• We propose a novel in-SRAM approximate multiplier
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that approximates matrix multiplication with bitwise OR
operation.

• We propose the DAISM architecture that leverages the
in-SRAM approximate multiplier to realize performance
gains and trade-offs between latency, area, and energy
efficiency.

• We perform extensive evaluations on our proposed DAISM
architecture and compare it with current SOTA baselines.
Our results show that it is energy efficient, and requires
fewer clock cycles with minimal to no degradation in
model accuracy.

• We discuss and analyze the different trade-offs possible
with our architecture.

This article is structured as follows. Section II recap the ba-
sics of binary multiplication, then discusses some related work
and how this work differs from previously published papers.
Section III presents the basic concept behind the proposed
approximate multiplier as well as some ways of improving
its performances. Section IV then introduces the DAISM ar-
chitecture. Section V explains the evaluation methodology and
discusses the multiplier and accelerator’s performances. Finally,
Section VI concludes this work.

II. BACKGROUND AND RELATED WORKS

A. Binary multiplication

To multiply two operands (the multiplicand and the multi-
plier), partial products (PP) first need to be generated. Each PP
equals either the shifted multiplicand or 0 if the corresponding
bit from the multiplier is 0. Those partial products then need
to be added, which incurs significant overhead due to carry
propagation. Meanwhile, floating point (FP) numbers consist
of 3 segments: sign, exponent, and mantissa, varying in size by
data type. Multiplying them involves multiplying mantissas as
unsigned integers and adding exponents. The mantissa is then
normalized and the exponent is realigned. Finally, the output’s
sign bit is an XOR of the operands’ sign bit.

B. Related works

To enhance DL architecture performance, some new multi-
pliers employ approximations [2], [3] as DNNs have a large
error resilience. For instance, [2] decreases PPs by performing
bitwise OR operations among them. However, they still demand
adder trees. [3] instead approximates the lower part of the result
via PP bitwise OR, and the upper part using approximate Full-
Adder logic. Still, none of these multipliers can operate in
memory. Our approximate multiplier can, which solves the data
movement problem.

Other works such as [6], [7] use Processing-in-Memory
(PIM), in which novel memory technologies are used for
direct in-memory computations, bypassing processing units.
Examples include [6] which employs RaceTrack memory for
in-memory integer multiplication, and [7] which leverages
ReRAM memory for MAC operations. These technologies
showcase minimal energy use, no data movement, and better
performances by fully capitalizing on DNNs data parallelism.
Nonetheless, these memory technologies face challenges to

their novelty. RaceTrack and ReRAM, being yet-to-mature, lack
the research and optimization of traditional SRAM. Analog in
nature, they need digital-analog-digital conversions, impairing
signal, increasing power use, and limiting throughput [8], [9].
Our approach is based on conventional digital SRAM instead.

Finally, SRAM-based PIM technologies such as [10], [11] all
perform bit-serial computations. They hence suffer from data
reformulation and lack the support of SOTA hardware, as these
are often bit-parallel. Bit-parallel multipliers instead benefit
from the latest breakthrough and can be easily integrated into
existing systems. Finally, in-memory bit-serial multiplication
often has a very large complexity [14]. While this can be
solved through pipelining, it comes with complexity and area
overheads. Our architecture only uses bit-parallel hardware and
can easily be implemented in existing technologies.

III. PROPOSED MULTIPLIERS

A. Core concept

Carry propagation during partial summing decreases
throughput and increases energy consumption. The proposed
multiplier therefore avoids this by approximating this sum
by a bitwise OR, requiring no adder tree, sacrificing some
computational accuracy instead. Previous work proposed this as
well, but only on the lower part of the result with no accuracy
recovery mechanism [3]. Furthermore, by using a slightly
modified SRAM memory thoroughly described by [15], this
step can be performed in memory. Indeed, by reading multiple
wordlines at the same time, a bitwise OR between them is
read instead. [15] proved such technology to be viable and at a
negligible cost as it only required some extra sense amplifiers.
This SRAM can also function as a traditional memory but to
allow multiple wordlines activation, a special address decoder
must be designed though this will be proven to be negligible
later on. Multiple wordlines activation has also been shown to
pose no major problems in terms of signal-to-noise ratio or
throughput [15]. Finally, the cost of the extra sense amplifier
can be avoided by re-wiring the existing one in traditional
SRAM.

Fig. 1 describes the proposed multiplier. First, the multipli-
cand is stored. The multiplier is then used to activate multiple
wordlines, generating PPs. By doing so, a wired-OR between
PP is read, which approximates the result. This multiplier will
be referenced as FLA, standing for Full Lines Activation. For
DNNs, the multiplicand is a kernel element, and the multiplier
is an input element. The small size of most kernels makes
a moderately-sized memory enough to store them, as will be
discussed in Section V. Finally, this approach makes handling
data represented in two’s complement difficult. This work
however focuses on FP mantissa multiplication, which only
uses unsigned integers.

B. Storing pre-computed values

As previously stated, accuracy drops most when two suc-
cessive lines must be activated. Let us assign capital letters
to each PP. For instance, in an 8-bit setup, A refers to the
multiplicand shifted 7 times, and H represents the unshifted

Authorized licensed use limited to: Keio University. Downloaded on March 26,2025 at 02:40:55 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Example of the proposed multiplier’s concept for
a = 1011 and b = 0101. The SRAM line is read if the
corresponding bit from the multiplier is 1

Fig. 2: In PC2, the pre-computed sum between the two largest
PP is stored

multiplicand. Most of the accuracy loss happens when A and
B’s wordlines are active at the same time. Indeed, neighboring
PPs have a high chance of collisions and those two directly
affect the MSBs of the output. If instead of storing the LSB’s
PP (H for 8-bit values) the exact result of A+B is stored as
shown in Fig. 2, accuracy can be recovered with only a slightly
more complex address decoder at no additional memory cost.
This new PP would be selected whenever A and B should both
be active. This is referenced as PC2 standing for Pre-Computed
sums between 2 partial products. All other PPs are handled as
in FLA. This article will explore PC3 as well, in which the
pre-computed sum of all possible combinations of the A, B,
and C lines are stored.

C. Floating point generalization

For FP arithmetic, the proposed multipliers are only capable
of handling mantissa multiplication. The exponent and sign
bits are handled separately, and multiplications by zero are
bypassed.

Furthermore, the IEEE FP standard requires an extra “1” to
be added at the MSB of the mantissa. This “1” is implicit in the
binary representation. A 23-bit mantissa hence becomes a 24-
bit unsigned integer whose MSB is 1. The PP A is hence active
for all operands and, if PP B must be activated as well, the
AB line (storing the pre-computed sum of these PPs) in PC2
will be activated instead. The line for PP B will hence never be
active and can be left out, reducing memory consumption. PC3
also greatly benefits from this, as many combinations between
the A, B, and C lines are no longer possible.

Moreover, because the proposed multiplier does not use
any carry, the computation can be truncated arbitrarily, greatly
improving performances at the cost of accuracy. This article
will hence explore PC2_tr and PC3_tr in which the result
is truncated to only compute the n MSB. The value of n is the
mantissa width of the data type, including the leading “1”.

Fig. 3: 4 banks DAISM architecture. Inputs are fed one at a time
to the SRAM from a register file through the address decoder.
The dotted area represents unused SRAM space (not to scale)

Finally, many accelerators do not use standard FP but
rather variations such as BFP. Because this multiplier handles
arbitrary-size integer mantissa, any other FP representation
can make use of this multiplier as long as it requires integer
multiplications. This article explores the float32 format as
well as bfloat16 [16]. The latter is similar to float32 but
uses a 7-bit mantissa instead of the standard 23. This number
format is most notably used in Google’s TPU.

IV. ACCELERATOR ARCHITECTURE

A. Core architecture
The proposed architecture (Fig. 3) replaces the systolic array

with a large SRAM memory, modified as proposed by [15]
to support a wired-OR operation through multiple wordlines
activation. Each kernel would be flattened and stored as shown
in Fig. 3. The inputs are taken from the top scratchpad and
stored in a register file. They are then read one at a time and
used to activate SRAM wordlines through an address decoder.
Each input is hence multiplied by all the kernel elements on
the same row at the same time. The results from these products
are then fed to an accumulator at the bottom, accumulating the
results of the multiplications. The final results are finally stored
in another scratchpad memory.

This architecture can be applied to any variation of the
proposed multiplier and any SRAM size.

B. Architecture variations
A variation of this architecture involves dividing the large

square SRAM memory into smaller square banks. This eases
SRAM manufacturing and allows for different inputs to be fed
to different banks simultaneously, as shown for the four banks
in Fig. 3.

The architecture also prefetches inputs from the scratchpad
into an intermediary register file, like [1] does, except it only
has one per bank. This reduces the frequency of expensive
scratchpad reads, favoring the smaller register file.

This architecture is hence compatible and comparable to
most systolic array architectures, only changing the way
operands are multiplied and the way kernels are encoded.
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TABLE I: Summary of the proposed multipliers

Config. Precomputed wordlines Truncation
FLA No No
PC2 Between 2 PP No
PC3 Between 3 PP No
PC2_tr Between 2 PP Yes
PC3_tr Between 3 PP Yes

Fig. 4: Accuracy evaluation for larger CNN using bfloat16
truncated PC3 compared to an exact float32 baseline

For floating point numbers, this pipeline can only be used to
multiply mantissa’s as unsigned integers. The exponents must
be handled separately, similar to how a block floating point
architecture would work. This data type only has one exponent
per matrix, reducing data size and improving performance.

V. EVALUATION

This section evaluates the multipliers shown in Table I in
terms of energy consumption per computation, and accuracy
loss.

As a baseline multiplier for the energy consumption, the 32-
bit floating point multiplier from [17] is assumed to be used
in an architecture similar to Eyeriss [1] to take into account
operands read. [17] is chosen as a baseline multiplier as it
provides energy consumption and area for different levels of
truncation. The proposed multipliers are evaluated for both
float32 and bfloat16 operands. The multiplier from [17]
must hence be adapted to approximate the energy consumption
of a bfloat16 multiplier, as will be explained in Section
V-B1.

The proposed architecture is evaluated in terms of on-chip
area and performance compared to Eyeriss, using Accelergy,
as will be explained in Section V-A1.

A. Accuracy

1) Methodology: The accuracy drop is evaluated on large
models trained on ImageNet, such as ResNet-50 [18], [19]. The
baseline uses float32 data while the proposed architectures
use bfloat16.

2) Results: Fig. 4 shows the accuracy for various large
CNNs when executed on PC3 compared to the FP32 base-
line. Despite some accuracy drop being felt compared to the
float32 baseline, DAISM is still able to achieve high accu-
racy on larger models while bringing energy and performance
benefits as will be discussed in the following sections.

Finally, DNN inference with approximate computing is es-
pecially targeted toward edge devices that rarely employ deeper
neural networks. The choice of accelerating floating point

mantissa arithmetic also limits error magnitude (as opposed to
integer arithmetic or exponent handling) while still providing
great benefits as will be shown in Sections V-B and V-C.

B. Energy consumption

1) Methodology: The energy consumption of the proposed
multipliers has been evaluated with CACTI [20], [21] and
Synopsys’s Design Compiler using NANGATE 45nm technol-
ogy. Our multipliers are compared to the truncated float32
multiplier from [17]. For both the proposed and the baseline
multipliers, operands read has been considered.

Finally, a baseline bfloat16 multiplier can be deduced
by scaling [17] as in (1) in which the energy consumptions
Esim,16 and Esim,32 have been simulated using NANGATE 45nm
(bfloat16 and float32 respectively) and E16, E32 are the
energy consumptions of the baseline multipliers (bfloat16
and float32 respectively).

E16 = E32 ·
Esim,16

Esim,32
· T (1)

2) Results: Fig. 5 shows the energy consumption for all the
proposed multipliers compared to the baseline. This includes
the energy consumption required for additional components,
such as the address decoder. The figure compares the en-
ergy consumption per computation across proposed multipliers,
datatype, and the size of the bank performing in-memory
computations. We can see the following points from Fig. 5:

1) The cost of the address decoder is negligible. It represents
less than 0.5% of the energy consumption in all cases.

2) Memory read plays an important role in energy consump-
tion. For in-memory computations, this cost is reduced
by the many reuses and by reading one operand from a
register file.

3) While using a smaller memory decreases energy con-
sumption per read, the decrease in the number of com-
putations per memory read cancels out the benefits.
There is hence no major difference in terms of energy
consumption per computation.

4) Truncation allows for drastically improved performances
as it nearly doubles the number of computations per
memory read. Truncation therefore nearly halves memory
read energy consumption, greatly reducing overall energy
consumption.

The In-Memory multipliers require fewer data movements to
perform a multiplication operation. Indeed, one operand can be
left in place, unlike a traditional multiplier. While this has been
shown to have a significant impact on energy consumption [4],
[5], it has not been taken into account as when integrated into
a DL accelerator, data movement is still required between the
SRAM and an accumulator.

Exponent adding and realignment are common costs for both
the baseline and the proposed multipliers. Adding this common
cost reduces the benefits realized by using the proposed mul-
tipliers. Fig. 6 shows the improvement in energy consumption
when using PC3_tr compared to the baseline.
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Fig. 5: Energy break-down for all the proposed mantissa
multipliers compared to a common baseline for either a 32kB or
an 8kB SRAM. No-tr represent the spared energy consumption
by truncation

Fig. 6: Relative improvement in energy consumption when
taking into account exponent handling for different SRAM bank
sizes and data types

Finally, the cost of pre-loading data is made negligible by the
large operands reuse. For instance, The first layer of VGG-8 has
150,528 inputs for 1728 kernel elements. This means that each
input is reused for a very large number of kernel elements and
each kernel element is reused for thousands of inputs, making
the cost of any pre-loading negligible.

C. Architecture evaluation

1) Methodology: The proposed architecture and its varia-
tions (with a varying number of banks and memory size) are
compared to the Eyeriss architecture [1] using Accelergy and
Timeloop [22]. VGG-8 will be used to evaluate the architecture
as it is widely used and allows us to better highlight the key
differences between the architectures as it uses a larger number
of processing elements and require a larger amount of memory.

All architectures use the bfloat16 datatype. The area of
a truncated bfloat16 has been computed the same way the
energy consumption has been computed in V-B1.

Finally, in-memory technologies have not been evaluated
as they often perform full integer MAC operations and are
therefore unable to perform floating point operations.

2) Results: Fig. 7 shows the trade-off between the number of
cycles and the on-chip area to execute the first layer of VGG-8
on different architectures. The proposed architecture has been
evaluated by using one single 512kB or 8kB SRAM memory,
then by splitting it into smaller square banks.

Single bank architectures suffer from the lack of inputs
that can be fed at each cycle. Indeed, some input elements
must not be multiplied by all kernel elements, which decreases

Fig. 7: Architectures performances comparison when executing
the first layer of VGG-8 in bfloat16 representation between
the proposed PC3_tr-based architecture with different 45nm
variations

Fig. 8: Detailed area breakdown of the DAISM architecture

utilization. Moreover, while DAISM suits any memory shape,
a standard squared memory is assumed. While such a 512kB
bank can store up to 128x256 kernel elements, the considered
layer only has 1728, leaving most of the memory unused.

Furthermore, the 1x512kB architecture can only use 128
kernel elements at a time. Hence, dividing the SRAM memory
into smaller square banks, each taking distinct inputs at each
cycle, decreases the number of cycles at the expense of some
on-chip area and a larger data bus connecting the scratchpad
to the SRAM banks increasing costs. As a consequence, the
16-bank design has 512 processing elements which are about
3x those of Eyeriss. This however requires more hardware for
exponent handling and accumulation.

Decreasing the total on-chip memory allows an increase
in the number of banks while maintaining a small on-chip
area. This makes the 16 banks of 8kB variation the smallest
architecture while maintaining the same performance as the
128kB bank one.

In Fig. 8, the main SRAM’s area relative to other required
digital circuits (exponent handling, accumulators) for each
processing element is shown. When the SRAM’s width is
increased, its area is squares quadratically while the number
of PE increases linearly. The opposite is true when the number
of banks increases instead. Therefore, as memory banks get
larger, the area becomes dominated by the SRAM memory with
little performance benefits. However as the number of banks
increases, the area becomes dominated by other digital circuits,
and a larger cost is associated with each bank.

Table II compares DAISM to Z-PIM [10] and T-PIM [11]
which both use digital in-SRAM computation logics. Despite
using 45nm technology, DAISM achieves comparable energy
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TABLE II: Performances comparison between different PIM
architectures

Architecture DAISM Z-PIM [10] T-PIM [11]
Config 16x8kB 16x32kB — —
Computations bit-parallel bit-serial bit-serial
Node [nm] 45 65 28
Area [mm2] 2.44 4.23 7.57 5.04
GE Area§ [mm2] 3.81 6.61 5.91 15.51∼24.83
Clock [MHz] 1000 200 50∼280
Supply [V] 1.0 1.0 0.75∼1.05
GOPS 502.52 1005.04 1.52∼16.0∗ 5.56†

GOPS/mW 0.23 0.31∼3.07∗ 0.13∼1.26‡

GOPS/mm2 205.68 237.55 0.53∼5.31∗ 1.1†

§ Gate Equivalent area computed using nodes from [23]
∗ Varies according to the weight sparsity (0.1∼0.9).
† Measured with input sparsity of 0.9 and weight sparsity of 0.5.
‡ Varies with the input sparsity (0.1∼0.9); weight sparsity is set to 0.5.

efficiency but up to two orders of magnitude higher overall
performance and area efficiency with 16-bit inputs and weights.
On the other hand, this advantage in computation density over
Z-PIM and T-PIM remains an order of magnitude higher even if
the operating frequency of DAISM is scaled down to 200MHz.

D. Final analysis

Prior sections outlined trade-offs in the proposed multipliers
and their impact.

First, between the evaluated multipliers, PC3 is the best
choice for three reasons:

1) PC3 has better accuracy;
2) PC3 requires fewer simultaneously active wordlines;
3) The cost in terms of energy consumption per computation

is similar.
Truncation minimally affects accuracy, but significantly en-

hances energy efficiency per computation due to increased
computations per memory read. Additionally, our bit-parallel
approximate multiplier employs multiple wordlines for storing
partial products, temporarily using more SRAM. This doesn’t
pose a major problem as SRAM is abundant and can accom-
modate many kernels at runtime (each kernel may take around
a few tens of bytes). Moreover, when batch size is large during
inference, it amortizes the cost of populating SRAM with the
shifted bit patterns.

Finally, The proposed architecture improves performance
through more processing elements and reduces energy con-
sumption compared to Eyeriss due to lower per-computation
energy. A trade-off exists between performance and on-chip
area, which can be fine-tuned by selecting an appropriate
number of banks and memory size. Table III summarises
the key benefits of the proposed multiplier and accelerator
compared to other technologies.

VI. CONCLUSION

In this article, we propose multiple variations of an approxi-
mate digital in-SRAM multiplier for multiple data types. Most
notably, the PC3_tr variation stores pre-computed values, then
uses an in-memory wired-OR to combine them, approximating
the result. This allows for a decrease in energy consump-
tion compared to a traditional multiplier while avoiding large

TABLE III: Summary of the key differences between the
DAISM accelerator and related work

Data
Movement

Type of
Computation

Memory
Technology

Memory
Reads

DAISM None Digital Legacy Single
Digital
Multipliers Required Digital Legacy Single

Analog
PIM None Analog Novel Single

SRAM
Digital PIM None Digital Legacy Multiple

accuracy drops. Finally, an accelerator architecture has also
been introduced, capitalizing on this multiplier. Through our
comprehensive evaluations, this accelerator has been shown to
outperform Eyeriss, a cutting-edge accelerator, for a compa-
rable chip area, and it is more area efficient than two SOTA
SRAM-based PIM counterparts.
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