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Adaptive Power Management in Solar Energy Harvesting Sensor
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In this paper, we present an adaptive power manager for solar energy harvesting sensor nodes. We use a
simpli�ed model consisting of a solar panel, an ideal battery and a general sensor node with variable duty
cycle. Our power manager uses Reinforcement Learning (RL), speci�cally SARSA(λ) learning, to train itself
from historical data. Once trained, we show that our power manager is capable of adapting to changes in
weather, climate, device parameters and battery degradation while ensuring near-optimal performance without
depleting or overcharging its battery. Our approach uses a simple but novel general reward function and
leverages the use of weather forecast data to enhance performance. We show that our method achieves near
perfect energy neutral operation (ENO) with less than 6% root mean square deviation from ENO as compared
to more than 23% deviation that occur when using other approaches.
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1 INTRODUCTION
Energy harvesting sensor nodes (EHSN) are sensor nodes equipped with an energy bu�er (battery)
and an energy harvesting module. The presence of a battery along with an energy harvesting
module theoretically allows for perpetual operation limited only by the lifetime of the hardware
[8]. Perpetual operation is critical for realizing pervasive computing and Internet of Things (IoT) as
it opens the possibility of autonomous operation of sensor nodes.

Before the integration of energy harvesting modules,optimization techniques revolved around
minimizing power consumption of the node to extend the lifetime of the battery [20] and [22].
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However, with the possibility of harvesting energy from the ambient environment, the node is able
to recharge its battery. During times when energy cannot be harvested, the node can operate on
the energy stored in the battery.

This leads to the concept of energy neutral operation (ENO), introduced in [10], [16] and [9]. ENO
is achieved when the energy consumed by the node is less than or equal to the energy harvested
by the environment. In addition, we would also like to fully utilize all of the energy harvested to
power the sensor node. The condition when the amount of energy harvested equals the amount of
energy consumed by the node is termed as node level energy neutrality[19] or ENO-Max condition
[23]. Achieving node level energy neutrality ensures a minimum level of operation by the sensor
node at all times. In addition to this, the node is also able to increase its utility by exploiting as
much of the harvested energy when possible [9].

Achieving node level energy neutrality comes with several constraints, namely the size of the
battery and the maximum/minimum rates at which energy can be consumed and harvested. In
addition, the energy harvested from the environment is often unpredictable and unreliable. In such
a context, achieving node level energy neutrality is not trivial.

A major challenge in achieving node level energy neutrality is using the correct power man-
agement strategy to accommodate for the changing energy harvesting pro�les. Sensor nodes such
as those strapped to animals or mobile sensor nodes will encounter diverse and varying energy
harvesting opportunities. In addition, changes in weather patterns and climate will also require the
sensor nodes to adopt a suitable power management strategy. The sensor node must also be able
to adjust its behavior to account for changes in its device parameters such as changes in energy
harvesting e�ciency, battery degradation [14] and partial node failure/decrease in node’s energy
e�ciency. It is not practical to prepare heuristic contingency plans for all situations. This problem
is even more aggravated when we have to deal with billions and trillions of sensor nodes, each with
a unique power consumption pro�le and deployed to a unique environment. A natural solution in
this case is to have sensor nodes that are capable of autonomously learning optimal strategies and
adapting once deployed in the environment.

Several adaptive approaches to power management have been previously proposed. Section 2 goes
into more details about these methods. Our paper is based on these approaches and overcomes some
of their limitations. The �rst formal solution was presented in [9]. The authors use optimization
techniques based on linear programming integrated with an energy prediction mechanism. In
[23], the authors propose a linear quadratic control system for adaptive power management.
Reinforcement learning (RL) for power management is used in [5],[6], [2] and [15]. More details
on RL are given in Section 3. In short, in a RL setting, the power manager(or the agent) executes
some actions and interacts with its environment. The environment responds by awarding the agent
with a single value scalar reward according to some reward function. Through a number of such
interactions, the agent searches its action space and memorizes (learns) the most favorable action
for a particular state the agent might be in. An RL based learning approach is adaptive by nature of
its learning [13]. Since its learning is integrated with interaction with its environment, the agent is
able to respond to changes in slowly varying non-stationary environments [21].

We propose a power management policy based on tabular SARSA(λ) reinforcement learning (RL)
[21] for a solar EHSN. In this method of RL, some fraction of the reward is back-propagated to all
the actions and states that contributed to its achievement. This back propagation of feedback results
in faster learning [21] as compared to other methods that propagate their rewards by only one step.
In our formulation of the problem, the node is able to dynamically adapt its power consumption
depending on the energy harvesting opportunities by varying its duty cycle to ensure ENO. The
power manager makes its decisions based on information about its distance from energy neutrality,
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battery level, amount of energy being harvested and the weather forecast for the day. The learning
theory and its implementation methodology are explained in more detail in Section 4 and Section 5.
The distance from energy neutrality is referred here as Energy Neutral Performance (ENP). One of
our main contributions is the inclusion of ENP in the state de�nitions. This dramatically reduce the
learning time and enables the agent to be highly adaptive to environmental changes. Our results,
described in Section 6 show that the agent is able to adapt to seasonal variations, changes in climate
due to change in location, battery degradation and changes in device working parameters . As to
our current knowledge, the general adaptivity of a RL based power management strategy for EHSN
has not been investigated before.

The reward function is extremely critical in a RL framework as it is responsible for educating the
agent on what kind of behaviors are favorable. [2] and [15] use metrics related to data transmission
as rewards. This makes sense when the power consumption of data transmission is signi�cantly
greater than that of sensing operations. This assumption limits the scope of application and excludes
situations where other critical tasks consume signi�cant power. For example, when a mobile sensor
node has to allocate power consumption between locomotion, processing, transmission and sensing,
the amount of data transmitted may not be a good basis to determine the optimality of the actions.
The reward function mentioned in [6] has a more general scope of application. Here, the author
propose a reward function based on the instantaneous battery level and ENP. In our paper, we
improve on this and introduce a simpli�ed reward function that is natural, intuitive and performs
satisfactorily. We use the ENP at the end of an episode(day) as the sole basis of our reward function.
This is a novel contribution of our work. An added bene�t to this is that this reduces the variance in
battery levels and this in turn contributes to increase in battery life [1]. The novelty of this reward
de�nition is that it is indi�erent to the node’s tasks that consume power. As a result, our proposed
power management policy has a wider scope of application. In this paper, we assume all the power
consumed by the node is for sensing purposes. This is only for the sake of example and we can
extend this to any kind of node operation.

Our �nal contribution is to take into account the information about the weather forecast to
enhance performance. [18] use forecast data to model a weather predictor. It is obvious that the
availability of a perfect weather oracle would greatly enhance the performance of a power manager.
[9] and [2] mention some power management strategies when such non-causal data is available.
We use the formulation in [9] to obtain the theoretical upper limit in performance and use it for
comparison. It is impossible to expect such non-causal information in practice. However, it is
possible to obtain some general indication of future weather for the day. The information about the
type of weather - for e.g. sunny, fair, overcast etc. can be easily acquired from weather websites and
apps. We make use of this information to increase the performance of our agent. For the system
presented in this paper, we use the forecast data to give an estimate of expected solar energy.
However, the same argument can be made for other EHSN such as those driven by wind power.

In summary this work presents the following contributions:

• Adaptivity:We propose a SARSA(λ) RL based power management approach to ensure ENO-
Max operation. This approach enables the power manager to adapt to changes in weather,
climate, battery degradation and device parameters while achieving faster convergence.
This is attributed to our novel idea of using ENP as a state de�nition parameter.
• General Scope of Application: A direct consequence of our unique reward function is

that the power manager policy can learn to accommodate any kind of realistic system. As
a result, the scope of application is more general. Using our method, the policy can adapt
accordingly and maintain near-optimal performance even if the system parameters are to
change over time.
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• Enhanced performance: Our power management strategy improves performance by as
much as four times by leveraging information about the general weather forecast. The use
of such data allows the agent to anticipate the amount of energy that can be harvested and
adopt a suitable power management strategy.

2 RELATED WORK
An overview of di�erent energy harvesting architectures, sources of ambient energy and real
world example of EHSN is presented in [19]. In [4], the authors elaborate on design challenges
and solutions for energy harvesting communication systems in predictable and unpredictable
environments. [11] surveys management strategies for wireless sensor nodes on basis of their
energy provision and consumption.

The �rst formal description of energy harvesting sensor nodes and ENO was done in [9]. The
authors in [9] present a linear programming optimization solution when non-causal information
about the environment is available. We adapt their optimization technique to determine the optimal
policy and compare it with our results. When non-causal information is not available, they predict
the amount of energy that is expected and decide on the duty cycle accordingly. They take into
account battery ine�ciencies and also allow for adaptation of the duty cycle to accommodate for
any changes in predicted and actual harvesting conditions. However this technique relies heavily on
the accuracy of its prediction mechanism and prior knowledge of the statistics of the environment.
This is not always a realistic assumption.

In [23], the authors approach this problem by specifying a battery-centric objective function.
They argue that by minimizing the average square deviation in battery level, ENO-Max condition
is satis�ed. They achieve this by using a linear quadratic-tracker . They also take into account
the minimization of duty cycle variance. They do not attempt to model the energy source and do
not require prior information about the environment. While this approach is adaptive in nature,
it requires careful calibration of hyper parameters depending upon the environment. The agent
would not be able to "�x" its own hyper parameters if its environment should change.

An adaptive duty cycling method using continuous time Markov Chain Modeling by taking
into account the Quality of Service (QoS) requirements and the rate of change of battery level
depending upon the battery chemistry is given in [3]. RL strategies for power management are
described in [17]. In [2], the authors tackle the case of point to point wireless communication system
with stochastic data arrival and channel state processes. They provide optimization techniques
when non-causal information about the environment is known and in cases when statistics of the
environment are known beforehand. They then propose an RL based learning theoretic approach
to maximize total transmitted data. The authors use discrete states, actions and rewards similar to
our approach. In [15], the authors improve on this by using function approximation with RL to
accommodate for continuous states and rewards. As mentioned before, the techniques proposed in
[2] and[15] use data transmission metrics as a basis for rewards. This is not always reasonable in
general applications. Fuzzy rewarding schemes are mentioned in [12] and [7].

Optimizing the duty cycle to achieve node neutrality using RL is proposed also in [5], [6]. Their
basis for reward is the distance from energy neutrality and the current battery level. While this is
a more general formulation of the reward function, it is quite handcrafted. The reward function
is an indication of what kind of states or actions are favorable rather than directives on how to
achieve a certain goal. The distance from energy neutrality is not a good measure of reward during
an episode. We also use the same metric to determine the reward. However, the reward is fed back
only at the end of the episode. We believe that this re�ects the ENO-Max objective better.
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None of the previous research have investigated the adaptivity of their algorithms to changes
in climatic conditions and battery degradation. We observe the behavior of our agent to various
environments and observe its adaptive performance.

[18] show that performance of EHSN can be improved by using weather forecast information.
Their work uses this information to make better predictions about the energy that can be harvested.
Along the same lines, we also leverage the use of easily obtainable forecast data for a particular
day to improve performance.

3 THEORETICAL BACKGROUND
In this section, we explain our system model. We then go brie�y into RL and the SARSA algorithm.

3.1 System Model
Our system model contains four components - an energy harvesting source (solar panel), an energy
bu�er (battery), a sensor node (load) and a power management unit that controls the node power
consumption as illustrated in Figure1. The battery has a maximum capacity of BMAX . We assume
the sensor node to have a variable duty cycle. The power management unit uses information about
the current battery level, energy being harvested and the information about the weather to decide
the duty cycle of the node. We further assume that a higher duty cycle implies a higher power
consumption and higher performance from the sensor node.

Renewable 
Energy Source
(Solar Panel)

Energy Buffer
(Battery)

Sensor Node 
(Load)

Adaptive Power 
Manager using RL

eharvest(tk) enode(tk)

Energy being 
harvested

Duty Cycle
Battery Reserve Level

Weather 
Prediction

Fig. 1. System Model

We use a discrete time model where time is divided into equal intervals called epochs. A set
of epochs constitutes an episode. In the beginning of each epoch, the power manager receives
information about the weather condition that can be expected for the day. ebatt (tk ) is the battery
energy level at the start of the epoch tk . During each epoch, tk , the system receives a �nite amount
of energy, eharvest (tk ), from the environment. The power manager decides on a duty cycle, d(tk ).
The sensor node consumes enode (tk ) amount of energy depending upon d(tk ). As a result, the
energy in the battery at the start of the tk+1 epoch is given by:

ebatt (tk + 1) = ebatt (tk ) + eharvest (tk ) − enode (tk ) (1)
We assume no losses due to battery ine�ciencies. This can be assumed without loss of generality

because any such losses can be lumped together as increase in node power consumption. The
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distance from energy neutrality of the sensor node, or ENP, in a particular epoch tk , edist (tk ) is
given as follows:

edist (tk ) = eharvest (tk ) − enode (tk ) (2)
In [9], the authors present mathematical guidelines to calculate the battery size and the required

battery level to account for the variance in the energy harvested by the system and consumed by
the load. We follow their formulation in to determine the size of the battery and the optimum initial
battery level required for ENO.

3.2 Reinforcement Learning
Reinforcement learning is a machine learning technique where the machine (or agent) learns
through experience rather than through instruction. The agent interacts with an environment and
receives feedback in terms of a scalar reward signal. Through trial and error, the agent learns which
actions are favorable depending upon which state it might �nd itself in. With enough experience,
we expect the agent to come up with an optimal policy that will maximize its long term cumulative
reward.

A general RL model consists of a �nite state space S , an agent capable of executing a set of
actions A, and an environment that reacts to the said actions. The environment reacts to the agent’s
choice of action expressed by a scalar reward signal de�ned by the reward function R : S ×A→ R.
The action, a, to be executed when the agent is in a particular state, s , is dictated by the policy,
π = {(s,a)|a ∈ A, s ∈ S}. This is denoted by π (s) = a.

Each agent-environment interaction occupies an epoch. At epoch tk , the agent is in state sk ∈ S .
The agent takes an action, ak ∈ A, according to some policy π . The environment reacts to this
action by changing the agent’s state to a new state sk+1 ∈ S and rewarding the agent with some
scalar reward rk .

The objective of the agent is to �nd a policy that maximizes at each time step the expected
discounted sum of future reward. An optimal policy, π ∗, maximizes this quantity for all state-action
pairs.

To give a measure of the the goodness of a particular action, a, according to some policy π , when
the agent is in some state s , we assign each state-action pair a Q-value [21]. The Q-value, Qπ (s,a)
is de�ned as the expected sum of discounted rewards starting from state s , taking action a and
following policy π thereafter. Mathematically it is expressed as,

Qπ (s,a) = E

[
N−1∑
k=0

γ kr (sk ,ak )
]

(3)

where s0 = s,a0 = a, ak = π (sk ). γ , 0 < γ < 1, is a discount factor. Equation 3 assumes that
the agent-environment interaction lasts for N epochs. The Q-values for the optimal policy π ∗ is
denoted by Q∗. In this paper, we use SARSA(λ) algorithm to learn the Q-values. Determining the
optimal actions is trivial once Q∗ is known. For each state s , the action a that maximizes Q∗(s,a) is
the optimal action. Choosing actions in this way is called a greedy policy.

3.2.1 SARSA:. SARSA stands for State-Action-Reward-State-Action. The Q-value, Qπ (s,a), for
a state-action pair (sk ,ak ), corresponding to a policy π , is estimated by considering the agent’s
transition to another state-action pair (sk+1,ak+1) and the reward, rk , it receives in the process.

The agent starts out in state sk , takes action ak according to some policy π . As a result, it receives
a reward rk and is transported to another state sk+1. The agent then considers taking the next
action ak+1 according to the policy π . At this point, Q(sk ,ak ) is updated as follows:

Qπ (sk ,ak ) ← (1 − α)Qπ (sk ,ak )+α [rk + γQπ (sk+1,ak+1)] (4)
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where α , 0 < α < 1, is the learning factor.
We maintain a Q-table of all possible state-action pairs and their corresponding Q-values. With

a Q-table, �nding the optimal action requires only a single lookup. This is not a computationally
intensive process once the Q-values have been su�ciently learned.

3.2.2 Eligibility Trace: When an agent passes through a series of states by performing a sequence
of actions and receives a reward at the end of an episode, assigning credit to the appropriate state-
action pairs becomes an issue. To resolve this, we introduce a memory variable for each state-action
pair called the eligibility trace. The eligibility trace for a state-action pair at epoch tk is denoted by
ek (s,a) ∈ R≥0. During each epoch, the eligibility trace for all state-action pairs decays by γλ, and
the trace for the state-action pair visited on epoch tk is incremented by 1, i.e.

ek (s,a) =
{
γλek−1(s,a) if (s,a) , (sk ,ak )
γλek−1(s,a) + 1 if (s,a) = (sk ,ak )

(5)

for all (s,a), where λ, 0 < λ < 1, is a parameter that allows us to specify the strength with which
Q-values of early state-action pairs are updated as a consequence of the �nal reward. The value
of e(s,a) is a measure of how in�uential the state-action pair (s,a) was in obtaining the reward at
the end of an episode. We combine the concept of eligibility traces with SARSA learning to get
SARSA(λ). This is explained in more detail in the following section.

3.2.3 ϵ-greedy policy: We initialize the Q-table optimistically [21] by assigning all state-action
pairs high Q-values so that the algorithm is encouraged to explore more during the beginning of
the training period[21]. With su�cient training, the Q-values should converge to their true values.
SARSA learning converges to an optimal Q table when all state-action pairs have been visited
in�nitely often. However, acting greedily before convergence may lead to sub-optimal policies
because the agent would not have had the opportunity to sample state-actions pairs that might
have led to higher returns. In order to avoid this, we follow an ϵ-greedy policy. This mean the
actions are chosen greedily most of the time, but with probability ϵ , a random exploratory action is
selected.

4 SARSA FOR ENO
In this section, we explain how we set up the RL framework for our problem. We also present the
algorithm for SARSA(λ) learning.

4.1 RL Framework
The RL framework de�nes the state space and the action space. The environment, in this context,
consists of a stochastic energy source and the battery. It reacts to the agent by specifying a reward
based on the duty cycle chosen and a new state depending upon the amount of energy harvested,
the reserve battery level and the weather forecast information.

We train the agent in episodes. The agent takes a sequence of actions and traverses through a
series of states until the end of the episode (in our case an episode consists of 24 epochs). At the end
of the episode, the agent is awarded some reward which it uses to evaluate its actions and upgrade
its policy (Q-table). The state de�nitions, action space and the reward scheme are described as
follows.

4.1.1 State Space. Given the statistics of the environment, the optimum battery level, B0, can be
determined by using the formulation in [9]. What this means is that if the agent starts out with
B0 amount of battery at the start of every day, it is able to accommodate for the days with the
least energy harvested as well as days with the maximum energy harvested without depleting
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the battery completely or allowing it to be overcharged. We use this battery level to calculate the
distance from energy neutrality. Ideally, we would like the agent to begin everyday with B0 amount
of battery and end with exactly B0 remaining. If the battery level at epoch tk is B(tk ), we calculate
the distance from energy neutrality or ENP, edist (tk ), using B0 as reference according to Equation
6.

edist (tk ) = B(tk ) − B0 (6)
edist (tk ) is used to determine Sdist (tk ), the state of distance from energy neutrality. Using this

information for state de�nition makes our approach largely independent of the actual battery
capacity and thus more generally applicable. However, the agent also takes into account whether
the battery is in danger of being overcharged or completely depleted. This is re�ected in Sbatt (tk ),
the state of the battery reserve level. State Sday (tk ) gives an indication of what kind of weather the
agent may expect. With this state information, the agent is able to use di�erent strategies to achieve
ENO depending on how much energy it can expect to harvest. Finally, the state of the amount
of energy being harvested during the present epoch is given by Seharvest (tk ). Hence the di�erent
states in which the agent can exist is given by combination of Sbatt (tk ), Sdist (tk ), Seharvest (tk ), and
Sday (tk ) i.e.

(Sbatt (tk ), Sdist (tk ), Seharvest (tk ), Sday (tk )) ∈ S

4.1.2 Action Space. The action space, A, is de�ned as the set of discrete duty cycles that can be
chosen. A ∈ (Dmin ,Dmax ), where Dmin and Dmax are the minimum and maximum duty cycle of
the sensor node. The agent chooses one duty cycle in each epoch.

4.1.3 Reward Function. The reward indicates what kind of behavior best serves our objective.
In our RL model, the reward awarded at the end of an episode depends simply on the distance
from energy neutrality at the end of the episode. The "goodness" of any action in the middle of
an episode cannot be judged without taking the e�ect of other actions in the episode. Hence we
wait until the end of the episode to judge the "goodness" of the sequence of actions chosen. This is
also a fair reward system considering that ENO-Max operation can be achieved by a number of
di�erent methods i.e. it is not always necessarily the case that there is only one unique optimal
policy. This is because we have not included battery ine�ciencies in our formulation. As a result,
the system is indi�erent to using energy directly from the solar panel or from the battery.

Ideally we would like the agent to learn a policy to ensure zero deviation from its initial battery
level at the end of each episode. Low deviation are awarded large rewards and larger deviations are
awarded with lower rewards.

4.2 SARSA(λ)
The reward at the end of an episode is used to update the Q-values of the state-action pairs according
to Algorithm 1 [21]. The use of eligibility traces allows us to propagate the reward backwards to
all the state-action pairs that contributed to it. Before the training, the Q-table is optimistically
initialized to a high value qinit . At the start of each episode, the eligibility traces are reset and an
action is selected randomly. The agent then determines its state and uses an ϵ-greedy policy to
interact with its environment until the end of the episode. The reward it receives at the end of each
episode is used to update the Q-table towards a better estimate.

4.3 Training Setup
We use historical data for training the agent. We take solar data of a year and apply SARSA(λ)
learning for each day of that year for N number of iterations. The agent is trained in three phases.
In the �rst phase of training, the initial battery level is initialized to some middle value. In the
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ALGORITHM 1: SARSA(λ) algorithm
Initialize Q(s,a) = qinit and e(s,a) = 0 for all s,a;
for each episode do

Initialize s,a;
for each step of the episode do

Take action a, observe reward r and next state s ′;
Choose next action a′ from Q using ϵ-greedy policy;
δ ← r + γQ(s ′,a′) −Q(s,a);
e(s,a) ← e(s,a) + 1;
for all (s,a) do

Q(s,a) ← Q(s,a) + αδe(s,a);
e(s,a) = γλe(s,a);

end
s ← s ′;a ← a′;

end
end

second and third phase of training, this is initialized to high and low values respectively. This is
done so that the agent is able to ensure ENO even when battery levels are not initialized at optimal
levels. We observe the behavior of a trained agent by simulating it in an environment which it has
not experienced during training. We allow the agent to learn as it interacts with the environment
so that it can adapt and re-calibrate itself if need be.

5 SIMULATION METHODOLOGY
Here we describe the speci�cations of our system model and the parameters that are used during
training and implementation.

5.1 System Setup
We base our system speci�cation on a scaled up version up of a TMote Sky node powered by a 3.6V,
2200 mAh NiMh battery and a 6 W solar panel (220mm × 175mm). The node power consumption
varies from approximately 100 mW to 20 mW depending upon whether the node is sensing,
transmitting or receiving data. We scale up these values roughly by a factor of �ve. We chose this
particular con�guration simply for the sake of example. Any change in this system (for e.g. change
in battery capacity or node power consumption) is accommodated for by the power manager due
to its adaptive nature. This in fact is the essence of our approach - our power management policy
is �uid enough to �nd a near-optimal policy for any realistic system speci�cation without the need
for any intervention by the user.

5.1.1 Energy Source: To simulate the solar energy harvested, we acquire global solar radiation
data from the Japanese Meteorological Agency (JMA) website http://www.jma.go.jp. JMA provides
hourly data on the global solar radiation several locations in Japan. As a result, we �x an epoch to
be an hour long for our purpose. We use the solar radiation data to calculate the electrical energy
generated by a solar panel.

5.1.2 Sensor Node: We consider a general sensor node that consumes energy varying from 100
mWh to 500 mWh during each epoch according to the speci�ed duty cycle. We assume the power
consumption remains constant within each epoch. The possible duty cycles are 20%, 40%, 60%, 80%
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and 100%. We do not consider sensing latency inherent in sensor nodes for sake of simplicity. The
power manager is indi�erent to how the node allocates its power consumption.

5.1.3 Ba�ery: Using the guidelines in [9], we calculate the battery size, BMAX , and the optimal
initial battery level, B0. Using statistics for the year 2010, we arrive at BMAX = 40000mWh and
B0 = 60% of BMAX . We assume an ideal battery for the sake of simplicity. Any ine�ciencies of the
node, solar cell and the battery can be lumped together as an increase in node power consumption
in this context.

5.2 SARSA(λ) Parameters
5.2.1 Action Space. The action space, A, de�nes the actions that can be chosen by the agent. In

our case, the action space is A = {20%, 40%, 60%, 80%, 100%}.

5.2.2 State Definitions. The state of the system at some epoch tk is given by

Sk = (Sbatt (tk ), Sdist (tk ), Seharvest (tk ), Sday (tk )).

The state of the agent is determined from the actual values observed by the agent. Since these
values are continuous in nature, it is necessary to discretize and de�ne which values correspond to
which states. We use the following to assign states from actual observed values.

Sbatt (tk ) ∈ {Sb1, Sb2, Sb3} gives information about whether the agent is in danger of depleting
its battery or overcharging it. This is determined by the value of ebatt (tk ) according to Table 1.

Table 1. Sbatt (tk ) Assignment

Sbatt (tk ) Range
Sb1 ebatt (tk ) < 20% of BMAX
Sb2 20% of BMAX ≤ ebatt (tk ) < 80% of BMAX
Sb3 80% of BMAX ≤ ebatt (tk ) < 100% of BMAX

Sdist (tk ) ∈ {Sd1, Sd2, ..Sd40} gives information on how far the agent’s operation is from ENO.
This state is determined by the value of edist (tk ) according to the following.

• Sdist (tk ) ∈ {Sd22, ..Sd40} correspond to states in which edist (tk ) < 0 i.e. the battery is at a
level lower than B0.
• Sdist (tk ) ∈ {Sd21} corresponds to the state of perfect energy neutrality i.e. edist (tk ) =
B0 − ebatt (tk ) = 0;
• Sdist (tk ) ∈ {Sd1, Sd2, ..Sd20}correspond to states in which edist (tk ) > 0 i.e. the battery is at

a level higher than B0.
Neighboring states are spaced at a distance of 1000 mWh from each other.
Seharvest (tk ) ∈ {Se1, Se2...Se7} gives information about how much energy is being harvested at

epoch (tk ). Its value is determined by eharvest (tk ) according to Table 2.
Sday (tk ) ∈ {Sf 1, Sf 2...Sf 6} gives the agent general information about what kind of weather it

can expect during the day as shown in Table 3. In real world application, this information can
be obtained from weather apps or websites. For our case, we di�erentiate each day into one of
six di�erent types according to the value of eday , the total amount of energy harvested in that
particular day. Since we are training on historical information, eday can be easily calculated prior
to the training by using Equation 7.
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Table 2. Seharvest (tk ) Assignment

Seharvest Range
Se1 eharvest (tk ) = 0mWh
Se2 0mWh < eharvest (tk ) ≤ 100mWh
Se3 100mWh < eharvest (tk ) ≤ 500mWh
Se4 500mWh < eharvest (tk ) ≤ 1000mWh
Se5 1000mWh < eharvest (tk ) ≤ 1500mWh
Se6 1500mWh < eharvest (tk ) ≤ 2000mWh
Se7 eharvest (tk ) > 2000mWh

eday =
24∑
k=1

eharvest (tk ) (7)

Table 3. Sday (tk ) Assignment

Sday Weather Range
Sf 1 Very little sun eday (tk ) < 2500mWh
Sf 2 Overcast 2500mWh ≤ eharvest (tk ) < 5000mWh
Sf 3 Partly Cloudy 5000mWh ≤ eharvest (tk ) < 8000mWh
Sf 4 Fair 8000mWh ≤ eharvest (tk ) < 10000mWh
Sf 5 Sunny 10000mWh ≤ eharvest (tk ) < 12000mWh
Sf 6 Very Sunny eharvest (tk ) ≥ 12000mWh
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Fig. 2. Reward Function

5.2.3 Reward Function. The reward function in Figure 2 shows the relationship between the
reward and the distance from energy neutrality at the end of the episode (day), edist (T ). Since
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edist (T ) cannot always be exactly zero, we consider a margin of ±1000 mWh deviation as acceptable.
The symmetry of the reward scheme is due to the fact that both positive and negative deviations
from ENO have the same e�ect on the reward. During training, the rewards oscillate around some
�nal value which introduces some noise in the reward. The sharp pro�le of the reward function
allows the learning algorithm to arrive at true Q-values in spite of this noise. The gradual slope
between ±1000 mWh and±5000 mWh deviation enables the agent to incrementally improve its
performance without causing unstable oscillations during learning. This reward function is a novel
contribution of our work. It is simple and intuitive and best re�ects the ENO objective. Moreover,
this reward function is independent of system model speci�cations and thus has a general scope of
application.

5.3 Training Parameters
We execute Algorithm 1 with α = 0.001, γ = 0.8 and λ = 0.3. As with most RL problems, these
values were determined empirically rather than through mathematical methods. We evaluated the
system with di�erent combinations of the values of the hyper parameters and chose the combination
that performed the best. The system is somewhat sensitive to the values of α and ϵ . Using a high
values for α (learning rate) and ϵ causes large oscillations in Q-values during training. Hence, we
chose smaller values but compensated with a larger number of iterations during learning.

Each epoch is an hour long with one episode consisting of 24 epochs. During training, the agent
iterates N (N = 106) times for each day of the year. For the three phases of training, we �x the
initial battery level BI N IT at 60%, 80% and 20% of BMAX .

We train our agent with weather data of Tokyo for the year 2010. We then observe its performance
for the year 2011 in Tokyo and Wakkanai. Wakkanai lies in far north of Japan and experiences
a drastically di�erent weather than that of Tokyo. We use this change in location and climate to
observe the node’s adaptive behavior.

5.4 Evaluation Metrics
We refer to our power management policy as SARSA Policy. We compare our policy to a power
management strategy mentioned in [9] referred here as O�ine Policy. O�ine Policy uses linear
programming optimization methods with non-causal data on energy harvesting opportunities to
determine the optimal duty cycles. The results of this method are presented here as an estimate
of the upper limit of performance. This is not a practical method of power management because
non-causal data on energy harvesting opportunities is not available in real life. The O�ine Policy
solutions have real continuous values and therefore to ensure fair comparison, the values of the
duty cycles are rounded o� to the nearest possible duty cycle of the system. As a result of this
rounding o� process, the O�ine Policy also rarely every achieves perfect ENO. The O�ine Policy
uses an optimization window of one day (24 hours) to calculate the duty cycles. This also ensures
fair comparison with our method because our SARSA(λ) agent is also trained in one-day episodes.

We express the battery levels, duty cycles and energy harvested in percentage of their maximum
values. ENP are expressed as percentages of the maximum battery value BMAX . We use root mean
squared (RMS) values of ENP to compare performance between di�erent policies.

6 RESULTS
6.1 Learning Convergence
Figure 3 shows the convergence of SARSA(λ) to its �nal optimal policy as the agent trains over
a number of iterations. The graph shows the end of the day deviations from the initial optimal
battery level, B0 for each iteration during training on days 58 and 69 of the year 2010 (Tokyo).
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Fig. 3. Policy Convergence

We see that the agent is learning vigorously during the �rst 30000 to 40000 iterations. After
50000 iterations, it has �gured out the optimal policy as is evidenced by the low deviation from
energy neutrality in the �gure. For the next 50000 iterations, it follows this policy greedily taking
an occasional random action to see if it might lead to a better policy.

The �uctuations in the deviation from energy neutrality is the consequence of the limited number
of possible discrete power consumption modes in the node. Since the harvested energy can take
continuous values, it is highly unlikely that perfect energy neutral operation will ever be achieved.
There will always be a small amount of error. We allow an error margin of ±1000 mWh (±2.5% of
BMAX ) for the best case scenario. We tolerate up to ±5000 mWh (±12.5% of BMAX ) of deviation.
This is also re�ected in the reward function shown in Figure 2. Also, a small change in one of the
node’s actions may cause the deviation to jump between positive and negative values. This may
explain the oscillation in deviation values as the agent converges to an optimal policy.

6.2 Energy Neutral Operation
Figure 4 shows the comparison of SARSA Policy with the O�ine Policy for January 29, 2011 Tokyo.
The Constant Duty Cycle Policy is determined by simply dividing the total energy harvested by
24 i.e. the total number of hours in one day. Of course, this constant duty cycle is not a realistic
duty cycle that is achievable by the agent and is shown for comparison purposes only. The green
dotted-dashed line indicates the initial level of the battery (B0).
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It is worth noting that although the duty cycles of the O�ine Policy and SARSA Policy di�er
from each other, they both have very similar performance. Both start the day o� with 60% battery
end with near about the same battery level. The ENP at the end of the day for SARSA Policy and
O�ine Policy was 491.875 mWh and 191.875 mWh respectively. SARSA Policy violated the energy
neutrality by only 300 mWh (0.75% of BMAX ) more than that of O�ine Policy. In fact, SARSA Policy
shows slightly lesser RMS deviation (5.03%) as compared to the O�ine Policy (5.06%). This shows
that SARSA policy comes very close to optimal performance using only a general knowledge of the
weather forecast.

As mentioned before, the O�ine Policy optimizes its performance when considering one day
at a time. In Figure 5, we compare SARSA Policy with the O�ine Policy with a one-day window
(shown in violet) as well as with an O�ine Policy with a 30-day window (shown in blue) for 2011,
Tokyo. We allow the duty cycles of the O�ine Policy with a 30-day window to have continuous
values between 10% and 100% and as a result, perfect energy neutrality is achieved using this policy.

We observe the battery pro�les for di�erent polices for a 30-day period. We observe that both
SARSA Policy and one-day window O�ine Policy have similar behavior and try and maintain the
battery level at 60% of BMAX at the end of every day. In contrast, the O�ine Policy with a 30-day
window deviates signi�cantly from the optimal battery level during the middle of the 30-day period.
The SARSA Policy can also be modi�ed to optimize for a longer window. Such longer windows
optimization techniques show better performance especially when the battery is nearing its limits.
However they require more computation and exponentially longer training sessions.

Figure 5 also shows the battery pro�les for two other policies - the constant duty cycle policy
(shown in dotted blue) and a naïve battery-centric policy (shown in dashed orange). By averaging
the non-causal information about the energy harvested over the 30 day period, we can determine
the constant duty cycle to ensure ENO. This policy is not adaptive at all. Using a constant duty
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cycle policy may lead to battery overcharge/depletion and therefore wastage of energy and node
failure. We can observe that some amount of energy is wasted due to overcharging during Day 286
as a result of this policy. The Naïve policy is the simplest adaptive policy. It is battery-centric in
that the duty cycle is proportional to the battery reserve level. Higher battery drives the node with
higher duty cycles and vice versa. While this policy is simple to implement, it is not very intelligent.
For instance, on Day 288, the Naïve policy deviates quite far from the optimal battery level and
drops to almost 20% on Day 292. If the days following Day 292 were not sunny enough, the battery
could very well have been depleted. Figure 6 shows the RMS deviation from energy neutrality at
the end of the 30 day period. We can see that the Naïve Policy su�ers from the largest deviation
at more than 23%. SARSA Policy and one-day window O�ine Policy show very little deviation
3.46% and 5.27%. The constant duty cycle and 30-day horizon O�ine policy exhibit perfect energy
neutrality. However this comes at the cost of higher deviations as illustrated in Figure 5.
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6.3 E�ect of including weather forecast
In Figure 7 we compare the behavior of SARSA policies with and without forecast information
from Day 308 to 324 (Wakkanai 2011). The policy that does not involve weather forecast in its
decision making (violet) deviates more from the optimal battery level (shown in dotted-dashed
green) than the policy that considers weather forecast information (shown in red). Both policies
strive to achieve energy neutrality but the policy with weather forecast is more successful because
it leverages on the weather forecast information to make better decisions. On the other hand,
the weather agnostic policy uses a general policy for all weather types and this leads to lower
performance in comparison.

6.4 Adaptation to seasonal changes
Figure 8 and 9 compare the SARSA Policy and O�ine Policy for a week in spring and winter of
Tokyo 2011. Figure 8 shows the plots for the week starting from February 27. The second and third
day receive very little sunshine. However, starting from the fourth day, it gets a lot sunnier. We
can see how SARSA adapts its strategy when it is anticipating a sunny or non-sunny day. We also
observe that for the last three days of the week, both SARSA Policy and O�ine Policy max out the
duty cycle to 100% to be able to use all of the energy being harvested. In spite of their best e�orts,
the amount of energy that is harvested exceeds what can be consumed. This surplus is stored in
the battery and is re�ected in the rising battery level.

Conversely during the week (starting from Nov 29) in winter (Figure 9), the amount of energy
harvested is not su�cient to sustain even the minimum duty cycle. During the �rst three days,
both policies try to maximize their duty cycle as much as possible. However from the fourth day
onwards, both policies fall back to the lowest duty cycle. The last day of the week is quite sunny
and so both policies replenish their battery back to the optimum level. We see that SARSA has a
similar RMS ENP compared to the O�ine Policy during both spring and summer. This shows that
the SARSA Policy is able to maintain near-optimal performance while still being able to adapt to
seasonal changes.

6.5 Adaptation to climatic changes
To simulate a change in environment due to change in location, we observe the behavior of the node
in Wakkanai, a place with a climate drastically di�erent from which the node was originally trained
on. Figure 10 shows the performance of both SARSA Policy and O�ine Policy for a two-week
period starting from February 4. We can see that both policies have similar behavior.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 39. Publication date: October 2017.



Adaptive Power Management in Solar Energy Harvesting Node using ... 39:17

58 59 60 61 62 63 64 65 
0  

20 

40 

60 

20 

40 

60 

80 

100

Time (Day)

D
u

ty
 C

yc
le

 (
%

)
P

er
ce

n
ta

ge
 (

%
)

RMS ENP

SARSA: 6.71 %
Offline: 6.73 %

Energy 
Harvested (%)

Distance from 
energy neutrality (%) 

(SARSA Policy) 

Distance from 
energy neutrality (%)

(Offline Policy) 

Battery (%) 
(SARSA Policy)

Battery (%) 
(Offline Policy)

Duty Cycle 
(SARSA Policy)

Duty Cycle 
(Offline Policy)

Fig. 8. Tokyo Spring 2011

332 333 334 335 336 337 338 339
0  

20 

40 

60 

20 

40 

60 

80 

100

Time (Day)

D
ut

y 
C

yc
le

 (
%

)
P

er
ce

n
ta

ge
 (

%
)

RMS ENP

SARSA:  6.80 %
Offline: 5.08 %

Distance from 
energy neutrality (%) 

(SARSA Policy) 

Distance from 
energy neutrality (%)

(Offline Policy) 

Battery (%) 
(SARSA Policy)

Battery (%) 
(Offline Policy)

Duty Cycle 
(SARSA Policy)

Duty Cycle 
(Offline Policy)

Energy 
Harvested (%)

Fig. 9. Tokyo Winter 2011

The duty cycles corresponding to SARSA Policy have more variance than that of O�ine Policy.
This may be due to the fact that O�ine policy has perfect prior knowledge of all energy harvesting
data and so can optimize its policy better. SARSA Policy on the other hand does not have this
information and instead has to decide on an action only after it observes the current harvested
energy state. This may also explain why SARSA Policy has higher RMS ENP than O�ine Policy.

We believe that SARSA Policy adapts quite well to Wakkanai environment because we have used
distance from the energy neutrality as one of the state de�nition. Since the SARSA Policy is largely
independent of the battery level (except when it is near the extreme limits), the strategy it uses
during severe Tokyo winters also works for Wakkanai. Figure 11 is a color map that shows the
deviation from energy neutrality for both policies in the year 2011. The top half shows the results
for Tokyo whereas the bottom half is for Wakkanai. Each of the four color maps consists of 12 rows
corresponding to each month in the year 2011. Each cell of a month row corresponds to a day in
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the month and its color indicates the deviation from energy neutrality at the end of that day. Blue
cells indicate positive deviation i.e. more energy is harvested than that is consumed. Red indicates
that more energy is consumed than that was harvested. Greener the cell, the lesser the deviation.
The RMS ENP for each case is also shown alongside the �gures.

The battery is initialized to the optimal value at the start of each day to get a fair idea of deviation
from energy neutrality for each day. SARSA Policy is able to achieve ENO-Max operation in most
cases. The RMS ENP for O�ine Policy gives us an estimate of the best possible performance. We
observe that SARSA Policy comes very close to achieving optimal performance by adapting to the
changes in the environment.
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6.6 Adaptation to ba�ery degradation
To simulate the degradation of battery of the sensor node, we observe the behavior of SARSA Policy
for 2011 Wakkanai weather with only half the original battery capacity. BMAX is now reduced
to 20000 mWh and B0 = 60%o f BMAX becomes 12000. The SARSA Policy now tries to achieve
ENO around this new B0. Since the SARSA Policy gives greater weight to the distance of energy
neutrality than the actual battery level, the policy is able to achieve energy neutral performance
even when the battery capacity is halved. This is shown in Figure 12. The RMS ENP for O�ine
Policy again gives us an estimate of the upper limit in performance. We see that our policy comes
very close to achieving this in spite of a drastic change in device parameters. When comparing with
the O�ine Policy, we see that SARSA Policy show a slightly reduced performance (as evidenced by
fewer green cells) but has an overall satisfactory result.
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Fig. 12. Performance with half ba�ery capacity

6.7 Adaptation to changes in device parameters
In real life application scenarios, the sensor node may have to accommodate for changes in its
device parameters such as a decrease in energy harvesting e�ciency and energy e�ciency of the
sensor node. Our proposed solution is able to adapt to such changes and learn to perform optimally
in such scenarios. To simulate such a setting, we observe how SARSA policy learns to adapt to
conditions when we

• halve the solar cell output
• increase the node’s power consumption by 2.5 times (to simulate a degradation in the

node’s energy e�ciency)
The sensor node (agent) has to be put in a "learning mode" so that it can adapt to these changes

in working parameters. In this learning mode, the agent is allowed to train for 1000 iterations with
α = 0.1 and ϵ = 70 in its new environment. The high learning rate and exploration rate allows it to
quickly make changes in its learned Q-table. An additional advantage of this adaptive behavior is
that the sensor node can make up for any initial calibration errors by the user. Even if the sensor
node is assumed to be deployed in an environment it was not initially designed for, it can quickly
adapt and work optimally. Thus, even though the simulation and real world applications may di�er,
our approach to power management control is able to accommodate these di�erences and still
perform optimally.
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Figure 13 shows the battery pro�les for SARSA and O�ine Policy with default device settings
(without being put into the learning mode) for October 31, 2011. This is similar to the results in
Figure 4. The only di�erence is that it is for a di�erent date. We use this as the baseline performance.
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Fig. 13. Default Device Se�ings

Next, we observe the performance of the SARSA Policy when the solar panel output is reduced
by half. This can be due to decrease of solar panel e�ciency or a mismatch in design parameters
during testing and implementation. The battery pro�les for SARSA and O�ine Policy is shown in
Fig 14. We see that SARSA is able to achieve node level energy neutrality with very little battery
deviation at the end of the day. In fact, in this particular case, SARSA policy has a lesser deviation
from ENO than O�ine Policy. Although the O�ine Policy does represent the theoretical upper
limit, the rounding o� process involved can introduce some errors such as in this case.
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Fig. 14. Performance with half solar panel capacity

Finally, we consider the case when the sensor node consumes more power than it was initially
assumed. This again maybe due to decrease in the node’s working e�ciency or mismatch in design
and implementation. In Figure 15, we see that SARSA is able to achieve better performance than
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O�ine Policy in this case also. SARSA is achieves an ENP as low as 70.31 mWh at the end of the
day.
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Fig. 15. Performance with increased node power consumption

7 CONCLUSION
We observe that our SARSA(λ) based RL approach achieves near perfect ENO making autonomous
operation a possibility. We also see that our de�nitions of the state results in a highly adaptive
behavior. Our proposed method is able to adapt to changes in weather, location (climate), battery
degradation and device parameters which makes the sensor node robust in its operation. In addition,
our state de�nition and general reward formulation scheme allows for general application of our
power management method independent of the system it is being implemented in. We also show
that inclusion of weather forecast information enhances the performance of the proposed scheme.
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