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CONTEXT



Energy Harvesting Sensor Nodes

Theoretically capable of perpetual operation
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Sensor Node   

+  
Battery   

+ 
Energy Harvesting Module

(capable of varying the duty cycle)

http://www.libelium.com/resources/ima
ges/content/products/plug-
sense/details/solar_powered_photo.png



Challenge I
Say your battery is at 75% and there is plenty of sunshine

Do you

◦ Use the solar power to charge your battery only

◦ Use the solar power to charge your battery and drive the 
sensor node. If so, then with what proportion?
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Challenge II
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Environmental Sensor Networks – P.I. Corke et. al.

https://sites.google.com/site/sarmavrudhula/home/research/energy-management-of-wireless-sensor-
networks

http://www.mdpi.com/sensors/sensors-12-02175/article_deploy/html/images/sensors-12-
02175f5-1024.png

MOVING SENSORS

DIFFERENT ENVIRONMENTS

DIFFERENT SENSORS



Challenge III
BILLION AND TRILLIONS OF NODES
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https://bendeetech.files.wordpress.com/2015/12/theinternetofthings2-540x334.jpg?w=350&h=200&crop=1



Challenges II and III
When dealing with TRILLIONS of sensor nodes,

Customizing each node is impractical, impossible
◦ Nodes should OPTIMIZE themselves.

◦ Nodes should ADAPT to their changing environments.
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ENERGY HARVESTING NODES NEED TO BE 

ADAPTABLE
SELF CALIBRATING



What this presentation is about
To demonstrate how to overcome the challenges by 
using Reinforcement Learning (RL)

◦ Brief introduction to Reinforcement Learning

◦ Our approach using RL

◦ How this strategy performs compares to other methods

◦ How this strategy adapts to changing environment
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OBJECTIVES



Objectives
Energy Neutral Operation (ENO)
◦ Energy consumed = Energy harvested

Maximize Performance
◦ Maximize Duty Cycle

Minimize Battery Downtime
◦ Battery should never drop to zero

Minimize Energy Waste
◦ Battery should not overcharge

Energy Waste = Energy Harvested
–Energy consumed by Node
–Energy to charge battery
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SYSTEM MODEL



System Model
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REINFORCEMENT 
LEARNING (RL)
A BRIEF INTRODUCTION



What is RL

Type of Machine Learning - Learns by interacting 
with Environment

Suited for Sequential Decision Making Tasks

Map situations (states) into actions – receive as 
much reward as possible

Based on iterative process of trial and error – similar 
to how humans learn. (Search and Memory)
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Why Reinforcement Learning

By using RL, it is possible
oTo optimize nodes with raw high level data and minimal 

human input.

oTo adapt to changes in the environment parameters.
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Reinforcement Learning
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REWARD, New State

OBSERVATIONS: Battery Level
Energy Harvested

ACTION: Choose Duty Cycle

What action 
should I take to 

accumulate total 
maximum 
reward?

Agent
(Power Manager)

Environment

http://wedreamabout.com/product/bb-8-droid-
the-coolest-star-wars-toy-ever

http://www.canstockphoto.com/go-
green-icons-concept-tree-12796260.html



Reinforcement Learning
The question is:

WHICH ACTION TO TAKE WHEN YOU ARE IN A GIVEN STATE?

EXAMPLE:

Lots of sunlight | Battery at 60%

Do you

drive the sensor node at full strength without 
recharging?

drive the sensor node at half strength with partial 
charging?
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[1] https://spaceplace.nasa.gov/sun-corona/en/
[2] https://handyenergy.ru/

[1] [2]



Q- Value
Assign every state-action pair → Q-Value, Q(s,a)
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State 
X

Action 1 Action 3

Action 2

Q(X,1)
Q(X,2)

Q(X,3)

Q(s,a) means if the agent
• Starts from state s
• Takes action a
• Q(s,a) is the total reward it can expect in the best case scenario

Higher the Q-value, 
better the action for 
that particular state



Q-Learning
Challenge → Determining the Q-Values for all state-
action pairs.

Q-table -> contains Q-Values of all possible state-
action pairs

Accomplished by Q-Learning Algorithm
◦ Q-values are learned by interacting with environment.

◦ Iterative Process

◦ Bootstrapping approach
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Q-Learning Algorithm

Q-Learning Algorithm
◦ Use arbitrary estimates for Q-values

◦ Use these estimates to decide on actions

◦ Update Q-table by using the rewards received

◦ Repeat until Q-value sufficiently converge
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EXPERIMENTS ON 
ADAPTIVE POWER 
MANAGEMENT 
USING Q-LEARNING



State Space

State is defined by :

•amount of battery remaining 
• 200 possible levels 

•amount of energy harvested
• 5 possible levels

Total possible states: 200 x 5 = 1000 
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Action Space
Action: Choose duty cycle of the sensor node

𝐴 = 𝑎 𝑡𝑘 ∈ 10%, 20%, 30%… .100%

10% 50 mW

50% 250 mW

100% 500 mW
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Reward Function
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The reward depends on:

• Distance from energy neutrality at time tk

∆𝑒
𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝑡𝑘 = 𝑒
ℎ𝑎𝑟𝑣𝑒𝑠𝑡

𝑡𝑘 − 𝑒
𝑛𝑜𝑑𝑒

𝑡𝑘

• Amount of battery remaining



RESULTS



Training and Testing

Training: Tokyo (2000 to 2009)

Testing : Tokyo (2010)
◦Compare it with other methods.

◦Adaptation to diurnal and seasonal variations.
◦ Greedy and ε-greedy Implementations
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Comparison with other methods
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𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑊𝑎𝑠𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑

𝐸𝑛𝑒𝑟𝑔𝑦 𝑊𝑎𝑠𝑡𝑒
= 𝐸𝑛𝑒𝑟𝑔𝑦 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑

−𝑁𝑜𝑑𝑒 𝐸𝑛𝑒𝑟𝑔𝑦
− 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦



ADAPTATION TO 
SEASONAL 
CHANGES
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Performance in Summer 
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High Duty Cycle even 
during the night



Performance in Winter 
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ADAPTATION TO 
CHANGE IN 
LOCATION

8 March 2017 NAKAMURA LABORATORY 31



Implementation: ε-greedy approach
Perfect Q-convergence takes too long.

Instead, use ε-greedy approach with non-converged 
Q-table.

ε-greedy approach:
◦ Take the best action by default.

◦ Take a random action with probability ε.

◦ Increasing ε → Exploration

◦ Decreasing ε → Exploitation
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Adaptation to change in climate
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•Wakkanai (very little 
sunshine)

•Compare between
• a greedy approach (Offline) 

and 

• an -greedy approach 
(Online).

•Training: 2000-2009 Tokyo

•Testing: 2010 Wakkanai
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With -greedy implementation, the agent adapts to the 
environment and minimizes instances of battery exhaustion. 

Adaptation to change in location
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Total number of times the 
battery was completely 

exhausted

(14)

Greedy (Non adaptive)

-greedy (adaptive)



With and Without Forecast Information
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CONCLUSION



CONCLUSION
•Proposed system is able to meet objectives of
• Energy neutrality
•Maximizing performance

•Exceeds the performance of other schemes

•Capable of adaptation

•Inclusion of weather forecast results in smarter 
operation
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THANK YOU FOR 
LISTENING

ANY COMMENTS OR QUESTIONS ARE WELCOME


