Check for
Updates

EATS: Energy-Aware Adaptive Topology Switching for NoCs

Shaswot Shresthamal

Kyushu University
Fukuoka, Fukuoka, Japan

Man Wu

Keio University
Yokohama, Kanagawa, Japan
wu.man.wi5@acsl.ics.keio.ac.jp

u.ac.jp

Abstract

The topology of a Network-on-Chip (NoC) plays a critical role
in determining both its performance and power consumption. By
adapting the topology to match application-specific communica-
tion demands, it is possible to improve the energy efficiency of
the system. In this work, we present EATS (Energy-aware Adap-
tive Topology Switching), a runtime framework that dynamically
reconfigures the on-chip network among multiple topologies to
optimize energy usage. EATS integrates two decision engines: (i)
a lightweight threshold-based heuristic controller, and (ii) a low-
overhead, adaptive learning-based controller. Experimental results
demonstrate that EATS can reduce NoC energy consumption by up
to 47%.

CCS Concepts

« Computer systems organization — Interconnection archi-
tectures; Reconfigurable computing; - Hardware — Intercon-
nect power issues.

Keywords

networks-on-chip, topology, reinforcement learning, runtime opti-
mization, energy efficiency

ACM Reference Format:

Man Wu, Shaswot Shresthamali, Xiaoman Liu, and Yuan He. 2025. EATS:
Energy-Aware Adaptive Topology Switching for NoCs. In Great Lakes Sym-
posium on VLSI 2025 (GLSVLSI °25), June 30-July 02, 2025, New Orleans, LA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3716368.
3735175

1 Introduction

Network-on-Chips (NoCs) have emerged as a scalable and efficient
alternative for overcoming the limitations of traditional micro-
processor architectures [13]. By integrating multiple processing
cores on a single die and connecting them via an on-chip inter-
connect fabric, NoCs enable packet-based communication between
cores. Replacing large monolithic cores with numerous smaller ones
not only improves parallelism but also enhances energy efficiency.
While advances in process technology have made it feasible to in-
corporate an increasing number of cores onto a chip, this scaling

“This author is currently with RIKEN Center for Computational Science, Tokyo, Japan.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GLSVLSI °25, New Orleans, LA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1496-2/25/06

https://doi.org/10.1145/3716368.3735175

i

shaswot.shresthamali@cpc.ait.kyushu-

726

Yuan He*

Keio University
Yokohama, Kanagawa, Japan
isaacyhe@acm.org

Xiaoman Liu
Shenyang University of
Technology
Shenyang, Liaoning, China
Ixm@sut.edu.cn

introduces new challenges, particularly in terms of power consump-
tion and network congestion [7] which limit the overall scalability
and performance of NoCs.

Motivation: An effective strategy for improving the energy
efficiency of a Network-on-Chip (NoC) is the careful selection of its
topology, as it directly impacts both communication performance
and power consumption. For instance, with the same number of
cores, a ring topology can consume as little as one-tenth the power
of a crossbar topology. However, this energy advantage may come
at the cost of performance, potentially increasing communication
latency by up to four times, depending on the application’s traffic
patterns.

Our preliminary experiments indicate that the most energy-
efficient topology is highly dependent on the network’s injection
rate i.e., the rate at which nodes inject packets or flits into the net-
work. Moreover, this rate can vary significantly not only between
different applications, but also across different execution phases
of the same application, due to diverse runtime behaviors of on-
chip components. As a result, determining the optimal topology
in advance is non-trivial. Relying on a static, pre-defined topol-
ogy may lead to inefficient resource utilization and energy waste,
especially during low-load execution phases. To achieve minimal
energy usage without compromising performance, it is preferable
to adapt the topology dynamically based on current network and
application demands. These observations motivate the need for a
runtime topology adaptation mechanism capable of adjusting to
varying conditions to maintain energy-efficient NoC operation.

Proposal: To address this need, we propose a runtime Energy-
aware Adaptive Topology Switching (EATS) framework that
dynamically morphs the NoC topology to optimize energy effi-
ciency. EATS leverages runtime statistics such as injection rate
and energy consumption to guide topology switching decisions.
The framework consists of two decision engines: a lightweight
threshold-based heuristic controller and a Reinforcement Learning
(RL)-based controller. The heuristic controller offers low overhead
but lacks the flexibility to handle complex or dynamic workloads. In
contrast, the RL-based controller learns topology switching policies
and adapts better to diverse runtime scenarios, albeit with addi-
tional training and computation overhead. The choice of controller
can be tailored to the system’s performance and energy require-
ments. Topology switching is realized via on/off control of links
and fine-grained power gating [18, 22], enabling the selective ac-
tivation or deactivation of router components and interconnects.
This allows the system to seamlessly transition between different
topologies (e.g., ring, mesh, torus, crossbar) while maintaining a
connected and functional network.

https://orcid.org/0000-0002-8459-2028
https://orcid.org/0000-0001-8965-1018
https://orcid.org/0009-0006-2640-8268
https://orcid.org/0000-0002-4087-8905
https://doi.org/10.1145/3716368.3735175
https://doi.org/10.1145/3716368.3735175
https://doi.org/10.1145/3716368.3735175
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3716368.3735175&domain=pdf&date_stamp=2025-06-29

GLSVLSI °25, June 30-July 02, 2025, New Orleans, LA, USA

M. Wu, S. Shresthamali, X. Liu, and Y. He

(c) Torus

(d) Crossbar

Figure 1: Four typical NoC topologies with sixteen nodes. As we move from (a) to (d), the increased connectivity generally

results in higher throughput and higher energy consumption.

This work makes the following contributions:

e We propose EATS - an adaptive framework that dynami-
cally switches the network topology of NoCs at runtime to
enhance energy efficiency.

e EATS offers two controller options (threshold-based and
RL-based) for runtime topology reconfiguration, each with
distinct trade-offs in complexity, adaptability, and overhead.

e We provide a systematic comparison between conventional
methods and both controller options, and offer practical
guidelines on when each approach is most suitable.

The remainder of this paper is organized as follows. Sec. 2 pro-
vides background information relevant to this work. We present the
motivation behind our approach and detail the proposed framework
in Sec. 3. Sec. 4 outlines the evaluation methodology. The results
and analysis are presented in Sec. 5. We finally conclude the paper
in Sec. 6.

2 Background

2.1 NoC Topologies

The topology of a NoC defines the structure of routers, links, and
nodes, including the number and types of interconnections. Fig. 1
illustrates four typical topologies. The topology plays a pivotal
role in shaping the performance, cost, and power consumption of
the network. More specifically, it dictates the amount of hops (or
routers) a packet passes through and the distance between any
network ends, thereby having a considerable impact on the latency
and energy consumption of network traffic. Additionally, topology
also outlines the total number of alternative routes between nodes,
which determines the capacity of a network to distribute traffic and
to meet bandwidth demands. Our evaluations show that complexity,
throughput and power consumption increase from ring (Fig. 1a) to
crossbar (Fig. 1d) topologies.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning framework in
which an agent learns a policy to interact with its environment,
aiming to maximize cumulative rewards over time [21]. In each
time step, the agent observes the current state of the environment,
takes an action according to its policy, receives a scalar reward, and
transitions to a new state. This sequential interaction allows the

727

agent to refine its policy through trial and error, optimizing for the
long-term cumulative reward, or return, defined as:

[ee]
Re=rest +yrese +yirs+... = Z }’krt+k+1 (1)
k=0

where y € [0, 1] is the discount factor that progressively down-
weights future rewards to favor rewards at earlier time steps.

Q-learning [21] is a widely used RL algorithm that selects actions
to maximize Q-values, which represent the expected return for each
state-action pair under a policy 7, defined as Q” (s, a) = E[R;|s; =
s,a; = a]. In this work, the Q-values are learned via tabular Q-
learning [21] because it is has very low computational costs during
training and inference. In tabular Q-learning, the agent maintains
a Q-table that stores Q-values for all possible state-action pairs.
In the intial stage of training, the agent explores various policies
and updated the Q-values in the Q-table iteratively based on the
following rule:

0(s,a) = 0(s,a) +a [r + ymng (s,a) = OCs, a)])

where « is the learning rate, r is the reward received after taking
action a from state s, and max, Q(s’, @) denotes the Q-value of the
optimal action from the next state s’. After sufficient training, the
Q-values will converge to their true values [21]. During inference,
the optimal action for any given state is the action with the highest
Q-value corresponding to that state.

2.3 Related Works

Dynamic topology reconfiguration in NoCs dates back to Wang et
al. [22]. [6] throttle active subnets based on runtime load, while [10]
select optimization strategies at runtime. Unlike these, we focus on
enabling and disabling router components and links to reconfigure
topology. RL-based NoC research spans both design and runtime
optimization. Yin et al. [25] developed an RL-assisted arbiter for
contention-heavy traffic; Reza et al. [19] used RL for dynamic rout-
ing to reduce congestion. Wang et al. [23] proposed a fault-tolerant
RL controller to balance latency and energy. Adapt-NoC [26] ap-
plies RL to handle application-aware traffic, and Lin et al. [17] used
deep RL for exploring routerless topologies. IntelliNoC [24] inte-
grates Q-learning for low-latency, energy-efficient manycore NoCs.
In contrast, our work targets topology switching at runtime using
RL, leveraging both energy and traffic statistics.

EATS: Energy-Aware Adaptive Topology Switching for NoCs

Other energy-saving techniques span various design levels—from
router-level power gating [18], DVFS [20], to system-level bandwidth-
aware power provisioning [6, 11, 12], smart wiring [2], low-power
buffers [8, 14, 15], and data compression [5, 9]. In contrast, we focus
on topology reconfiguration at runtime by gating and de-gating
network components.

3 EATS Framework
3.1 Energy Performance of Different Topologies

80
(nJ)
70

60
50

40
30 * Ring

® Mesh
20 iz

/ Torus

10

+ Crossbar
0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Injection rate (flits/link/cycle)

Figure 2: Energy consumption per flit versus injection rate for
different network topologies under uniform random traffic
conditions.

Fig. 2 shows the energy consumption per flit as a function of
injection rate for four different topologies under uniform random
traffic (with configurations specified in Table 1). Two key observa-
tions emerge from the figure. First, for a fixed injection rate, the
choice of topology has a significant impact on energy efficiency.
For example, at low injection rates (to the left of "crosspoint a"),
the ring topology is the most energy-efficient. In contrast, at high
injection rates (to the right of "crosspoint c¢"), the crossbar topology
becomes the most energy-efficient.

Second, we observe a trend where topologies with higher connec-
tivity become more energy-efficient as the injection rate increases.
Notably, beyond "crosspoint c", the order of energy efficiency re-
verses—from ring, mesh, torus, crossbar at low loads to crossbar,
torus, mesh, ring at high loads. This shift in efficiency ranking
strongly motivates the need for a dynamic topology-switching
framework that can adaptively select the most energy-efficient
topology based on the current network injection load.

3.2 Hardware Support for Topology Switching

In this work, we assume that changing the network topology at
runtime is realized through on/off links and fine-grained PG in
the network [18, 22]. Such topology transitions can happen when
the corresponding links and input/output ports are not occupied
by any flits. We assume the routers in the NoC have three route
tables, each of which serves a topology out of ring, mesh and torus
while the crossbar topology is realized through an additional cross-
point crossbar switch connecting all network ends instead of the
network shared by the other three topologies. When a new topol-
ogy is picked, its corresponding route table will simply take over

728

GLSVLSI °25, June 30-July 02, 2025, New Orleans, LA, USA

Runtime

—
| n | n |

. Topology selection period

Execution with selected NoC topology!

Figure 3: The epoch-based topology-switching process

while only those flits coming through links and ports that do not
belong to the current topology are re-using the last route table.
This way remaining traffic from previous topology settings can
still be serviced without traffic loss. After topology changes, any
links and ports that do not belong to this new topology can be
switched off when there are no more incoming flits for them. This
link and port throttling can be realized on a per-cycle basis [18].
Furthermore, flit orders are maintained at each network end by
the network interface. Together with the prevention of traffic loss,
this helps maintain the correct operation of the network. With our
proposal, only topologies are altered at runtime, other system and
network settings remain unchanged.

3.3 Epoch-based Topology Switching

In practice, the on-chip network experiences varying traffic loads
(and therefore energy usage) as an application progresses through
different execution phases. To address this, we design EATS as an
epoch-based optimization framework that selects the most energy-
efficient topology according to the current network load. EATS em-
ploys either a threshold-based heuristic or a reinforcement learning
(RL)-based strategy to choose the optimal topology at the beginning
of each epoch, aiming to minimize per-flit energy consumption. As
the application executes, traffic statistics from the current epoch
are analyzed to guide the topology selection for the next epoch.
In essence, the application’s execution is partitioned into multiple
stages (epochs), and at each stage, EATS dynamically selects the
most suitable topology for the upcoming phase using one of the
two optimization strategies. This iterative approach enables EATS
to adapt continuously to workload variations and maintain high
energy efficiency throughout the runtime.

As illustrated in Fig. 3, execution begins with the selection of an
initial topology (mesh in our case) and the application runs for one
epoch while network statistics are collected. When the program
reaches the topology selection phase (highlighted in red in Fig. 3),
the EATS framework broadcasts an update to all routers to begin
using a new routing table. This transition period ends once all in-
flight flits reach their respective destinations. The duration of this
period may vary depending on the volume of remaining network
traffic. Afterward, the new topology is applied by activating or
deactivating specific links, and the next epoch begins. This iterative
process continues throughout the application’s execution. Two key
metrics, injection rate and energy consumption, are recorded during
each epoch. They are used by EATS to guide topology selection.
We experiment with epoch sizes of 10,000, 100,000, and 1,000,000
cycles, noting that larger epochs reduce switching overhead, while
smaller epochs enable finer-grained adaptation at the cost of higher
overhead.

GLSVLSI °25, June 30-July 02, 2025, New Orleans, LA, USA

Agent

ction| 0 Crossbar
State Mesh a, | Ringa, | Torusa, a A
@ Lookup table : . @ Maximum Q
sy | Qw0 || Qe | retsemrTotsmy
 N— -V
s, | Qs |) [Qme) | s
o)
(%] @
>
& 5 g
@ = =3
» o g
= (@ Calculate reward r S
® Update Q-value:
Q(s:2) =Q(s,a) + afr +y maxQ(s',a) -Q(s,a)]
Environment (NoC system) 2

Figure 4: Updating the Q-table using RL

3.4 EATS Decision Engines

3.4.1 The RL Decision Engines. To dynamically adjust the network
topology with our RL-driven approach, we define its state, action,
agent, and reward as follows:

State Definition: At each topology switching point, routers
collect internal network statistics to determine the state. The system
state is defined using one of the following two key metrics: (i)
average energy consumption per flit, or (ii) network injection rate,
both of which are derived from NoC router logs. As these metrics
are continuous, they are discretized into predefined ranges to enable
compatibility with the tabular Q-learning model.

Action Definition: The agent’s action is to select one of four
network topologies: mesh, ring, torus, or crossbar, represented by
the action set{ao, a1, az, a3} correspondingly.

Reward Definition: The goal of our RL agent is to maximize
the long-term reward which guides the action selection and even-
tually determines the energy consumption of network flits. We use
energy_consumption_per_flit as the reward function, defined as:

Reward = —energy_consumption_per_flit

= —Power X Network_latency_per_flit (3)

In each cycle, the agent observes the current state and selects the
action with the highest Q-value from the Q-table (i.e., the topology
with the highest Q-value). The network is then reconfigured to
the chosen topology. Afterwards, a reward is computed which the
agent uses to refine its policy through the Q-learning update.

Training: Fig. 4 illustrates how we apply the RL to switch the
topology. In step @, the agent looks up the state-action mapping
table corresponding to the observed state sg. In step @, the agent
selects a corresponding topology a from ay, a1, az, az, which has the
maximum Q(so, a) value. In step @), after selecting the action a, the
network topology is configures. In the next epoch, the the reward
r is calculated using Eq. (3), which depends on the performance of
the selected topology (action). Subsequently, the Q-value Q(so, a)
(i.e., the long-term return associated with the chosen state-action
pair) is updated based on the received reward using Eq. (2). Finally,
the updated Q-table is used in the next iteration, allowing the
agent to continually improve its decision-making process over time.
During learning, we use an e-greedy policy. Under this policy, the
agent occasionally selects a random action with a probability of €,

729

M. Wu, S. Shresthamali, X. Liu, and Y. He

Table 1: Evaluation Hardware Platform Configuration

Number of nodes 16

Topologies ring, mesh, torus, and crossbar

Processor 4 GHz, timing simple

L11/D cache 32 KB per processor, 4-way set associative,
4 cycles per access

L2 cache 256 KB per bank, 16-way set associative,
40 cycles per access
Cache line 64 Bytes

Main memory 8 GB, 120 cycles per access
Coherence protocol | MESI 2-level

Link 128-bit, 1 cycle traversal
Packet 128-bit control, 640-bit data
Router 4 GHz, 4-stage pipeline

Virtual channel 4 per virtual network

Virtual network 3 per physical link
Process technology | 22 nm
vdd 1V

ensuring that the learning process explores different actions, which
prevents it from converging prematurely to a suboptimal policy.

The agent starts with an uninitialized (zeroed) Q-table. We dedi-
cate early epochs (such as 5%, 10%, and 20% of the execution time)
for exploratory learning, during which the agent updates its pol-
icy via trial-and-error. After this phase, the Q-table is frozen, and
the agent’s greedy policy is evaluated over the remaining epochs
without further updates.

3.4.2 The Threshold-Based Engine. In addition to RL-driven con-
trol, we propose an alternative method threshold-based heuristic
engine for EATS. The threshold values for topology change are
determined using the crosspoints in Fig. 2. The figure shows the
energy consumption per flit versus injection rate across four dis-
tinct topologies under uniform random traffic. At an injection rate
of 0.025 (crosspoint a), energy consumption is the same for the ring
and torus topologies. Similarly, at an injection rate of 0.110 (cross-
point b), the mesh and torus topologies exhibit equivalent energy
consumption, and at 0.175 (crosspoint c), the crossbar and torus
topologies demonstrate matching energy profiles. Therefore, using
these crosspoints, we can readily identify an appropriate topology-
switching action. For example, we select the ring topology when the
injection rate is below 0.025. For injection rates between 0.025 and
0.110, mesh is better. When the injection rate ranges from 0.110 to
0.175, torus is preferred. For injection rates exceeding 0.175, cross-
bar excels. This threshold-based method requires a very simple
controller, which is implemented and connected to all routers. This
controller has preset values of injection rates and per-flit energy
values as the thresholds. With these thresholds, we can easily deter-
mine a topology-switching action. However, these thresholds are
derived from uniform random traffic, which may not be optimal
for complex situations.

With both approaches (the RL-driven and the threshold-based), it
is possible to balance cost and system performance while minimiz-
ing per-flit energy consumption in the network, providing flexibility
to meet specific requirements. With our framework, we assume
that the topology selection periods allow sufficient time for the
RL agent and the threshold-based controller to communicate with
routers for gathering statistics and switching the topology.

EATS: Energy-Aware Adaptive Topology Switching for NoCs

80
60
40

20

80
60
40

20

80
60
40

20

blackscholes

bodytrack
(c) Epoch size is 1,000,000 cycles

Figure 5: Energy consumption per flit with fixed topologies and proposed schemes with the original (1x) injection rate

swaptions

Table 2: Evaluation Parameters

Applications blackscholes, bodytrack, facesim, swaptions,
and x264

small for blackscholes; medium for bodytrack,
swaptions, and x264; large for facesim

1x, 2x, and 4x

10,000; 100,000; 1,000,000

5%, 10%, and 20%

Input sizes of the
applications

Injection rates
Epoch sizes (cycles)
Percentage of epochs
for exploration

RL model parameters

a=0.1,y=0.9,and € = 0.01

4 Evaluation Methodology

In this paper, trace-based simulations are used to evaluate the perfor-
mance and energy consumption of NoCs. First, we collect on-chip
traffic with the help of gem5 [4] computer architecture simula-
tors. This traffic is then replayed in GARNET [1], a cycle-accurate
network model, to retrieve the network statistics (with various
performance-related metrics). Afterwards, such network statistics
are fed to McPAT [16] power modeling framework to evaluate the
power consumption of the network. In addition, both of our op-
timization approaches are simulated with the tool implemented
by Reza et al. [19]. We have modified their tool to implement our
threshold-based approach and repurposed their RL implementa-
tion for our experiments. Configurations of the evaluated hardware
platform are summarized in Table 1 while the five PARSEC work-
loads [3] and evaluated parameters are presented in Table 2. To
speed up the evaluation, we picked the “Timing Simple” CPU model
in gem5. It is relatively simple but we have condensed the traces
for two and four times to increase the injection to the network (to
mimic more powerful CPU models).

The thresholds in our proposals are derived from the uniform
random synthetic traffic as mentioned earlier. The RL model used
has a learning rate of « = 0.1, a discount rate of y = 0.9, and an
exploration rate of € = 0.01. These parameters are carefully picked
based on related studies [17, 19, 23-26]. Our RL-driven approach
makes use of statistics extracted from GARNET and McPAT outputs,

730

GLSVLSI °25, June 30-July 02, 2025, New Orleans, LA, USA

[Ring @ Mesh MTorus OCrossbar I Random M Threshold-based (IR) EIRL (IR, 5%) ERL (IR, 10%) [RL (IR, 20%) [Threshold-based (Energy) [RL (Energy, 5%) & RL (Energy, 10%) E RL (Energy, 20%)

facesim Geo-mean

including power consumption, simulation time, average network
latency, and the number of flits.

5 Results

The evaluation results are shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8.
We conduct simulations across four fixed topologies (ring, mesh,
torus, and crossbar), a randomly switching baseline, and eight con-
figurations of our proposed EATS framework. Among these, two
configurations use the threshold-based approach, which adapts the
topology based on either injection rate or per-flit energy consump-
tion. These are labeled as “Threshold-based (IR)” and “Threshold-
based (Energy)”. The remaining six configurations employ the RL-
based approach, also adapting based on either injection rate or
energy consumption, but with varying levels of exploration dur-
ing learning. These are denoted as “RL (IR, 5%)”, “RL (IR, 10%)”,
“RL (IR 20%)”, “RL (Energy, 5%)”, “RL (Energy, 10%)”, and “RL (En-
ergy, 20%)”.

Within Fig. 5, Fig. 6, and Fig. 7, there are three sub-figures, each
of which corresponds to an epoch size. Fig. 5 represents the origi-
nally collected network trace while with Fig. 6 and Fig. 7, we have
condensed the trace so that traffic to the network is injected within
half or one-quarter of the original time.

It can be observed that both our proposals (threshold-based and
RL-based) perform well regardless of the amount of injection but the
RL-based approach is marginally better than the threshold-based
approach with higher injections. On average, under 4x injection
and 10% being the amount of exploratory learning, both proposed
approaches reduce energy consumption by 4.7% to 23.6% compared
to the best topology (Mesh), by 23.3% to 23.6% compared to the
random case, and by up to 47.4% compared to the worst topology
(Crossbar). In the Blackscholes benchmark at the 1x injection rate,
the proposed approaches achieve energy reductions of 13.3% to 9.7%
compared to Mesh, of 38.7% to 36.2% compared to the random case,
and up to 65.1% compared to Crossbar. Overall, both demonstrate
competitive outcomes compared to fixed topologies. Notably, the
threshold-based one using injection rate as the metric proves to

GLSVLSI °25, June 30-July 02, 2025, New Orleans, LA, USA

80
60
40

20

80
60
40

20

80
60
40

20

blackscholes swaptions bodytrack

M. Wu, S. Shresthamali, X. Liu, and Y. He

HRing @Mesh ©Torus CCrossbar CRandom M Threshold-based (IR) GRL (IR, 5%) ERL (IR, 10%) [RL (IR, 20%) [Threshold-based (Energy) & RL (Energy, 5%) & RL (Energy, 10%) & RL (Energy, 20%)

facesim X264 Geo-mean

(c) Epoch = 1,000,000 cycles
Figure 6: Energy consumption per flit with fixed topologies and proposed schemes with 2x injection rate

80

60

40

20

80
60
40
20

2]

80
60
40

20

blackscholes swaptions bodytrack

facesim X264 Geo-Mean

(c) Epoch = 1,000,000 cycles
Figure 7: Energy consumption per flit with fixed topologies and proposed schemes with 4x injection rate

be the most efficient. Furthermore, using injection rate as the in-
put outperforms energy consumption as the input to optimize the
network energy efficiency.

Regarding epoch size, we can observe that our two approaches
perform slightly better with smaller epochs, especially when injec-
tion load is low (as in Fig. 5 and Fig. 6). This is reasonable since
smaller epochs result in more adaptive changes. But in reality, too
small epoch sizes may incur large adaptation overheads. For the
amount of exploratory learning, we notice that the RL-based ap-
proach behaves similar with 5%, 10% and 20% of the execution time
dedicated to training. This indicates that setting 5% as the amount
of exploratory learning may already suffice.

Moreover, there are two phenomena we learn from these results.
First, a fixed topology cannot guarantee the best energy efficiency.
As ring, mesh, or torus topology can perform better than other fixed
topologies for different workloads under various injection factors.
This emphasizes the motivation of our work, that is, a topology

731

may be suitable for an epoch when a workload runs, but not all the
epochs. Second, our proposals work to some degree but the results
differ among workloads, approaches, inputs, and injection factors.
In general, they perform very similarly when the injection factor is
low (as in Fig. 5). We can see that both approaches can help produce
on-par energy consumption per flit with the best fixed topology.

Last but not least, with Fig. 8, we have presented the rewards
over time in the RL-driven case with injection rate as the input, four
times the injection, and an epoch size of 100 thousand cycles. It can
be seen that the rewards stabilized at different time for these five
benchmarks, which means different workloads require different
amount of efforts (10%~20% of the execution time) for the RL agent
to be trained and there are cases where additional training may be
necessary during different phases of the workloads.

EATS: Energy-Aware Adaptive Topology Switching for NoCs

(a) blackscholes

N }

J -150

-100

(b) bodytrack

| T | T)

GLSVLSI °25, June 30-July 02, 2025, New Orleans, LA, USA

(c) facesim

-100

-150

1000 1500 2000 2500 0

(d) swaptions

2000

4000

6000 8000 10000 0

(e) x264

2000 4000 6000 8000 10000

Rewards (-energy/flit, nJ)

-100

0 2000 4000 6000 8000

6 Conclusion

Beyond the primary evaluation results, we highlight several key
insights. First, threshold-based methods perform well in typical
scenarios and are nearly on par with RL-based approaches under
moderate loads. However, their effectiveness declines under high
injection rates, suggesting that hybrid or adaptive schemes may
be necessary in dynamic environments. Second, RL-based meth-
ods, while promising, face three key challenges: (i) computational
and hardware overheads, and (ii) the need for training period. To
address these, we advocate for offline pre-training and simplified
models, which reduce cost but may limit adaptability during ex-
ecution. Third, hardware support for topology switching incurs
overhead. Sleep transistors (for PG), multiple routing tables, and
possibly an additional crosspoint switch (for crossbar support) are
needed. In practice, a subset of topologies, such as ring, mesh, and
torus, offers a more feasible trade-off between flexibility and im-
plementation cost. Fourth, the input metrics we have used i.e., the
injection rate per link and energy consumption, are global and
topology-agnostic, making them suitable for a system with a sin-
gle active topology. Finer-grained, spatially adaptive schemes are
possible but fall outside the scope of this work. Finally, while EATS
currently optimizes network-level energy, it can be extended to in-
corporate system-wide metrics, enabling more holistic optimization
across the chip.

In conclusion, this work demonstrates that dynamic topology
adaptation, either through a lightweight threshold-based method or
a more adaptive RL-based approach, can significantly reduce NoC
energy consumption compared to fixed static topologies. While
RL-based strategies show strong potential, especially under diverse
workloads, their practicality hinges on reducing computational
overhead. Overall, runtime topology switching presents a promising
direction for energy-aware NoC design.

Acknowledgments

This work was supported, in part, by JSPS KAKENHI with Grants
JP24K20843, JP22K21285, and JP20K23315, and by the Okawa Foun-
dation for Information and Telecommunications under Grant 21-04,
all from Japan.

0 2000 4000 6000 8000 10000

Epochs
Figure 8: Rewards over different epochs at runtime under 4x injection rate with an epoch size of 100,000 cycles

732

References

[1] N. Agarwal et al. 2009. GARNET: a detailed on-chip network model inside a
full-system simulator. In Proc. of the ISPASS 09. 33-42.

[2] F. Alazemi et al. 2018. Routerless Network-on-Chip. In Proc. of the 24th HPCA.
492-503.

[3] C. Bienia et al. 2008. PARSEC vs. SPLASH-2: a quantitative comparison of two

multithreaded benchmark suites on chip-multiprocessors. In Proc. of ISWC’08.

47-56.

N. Binkert et al. 2011. The Gem5 Simulator. ACM SIGARCH CAN 39, 2 (Aug

2011), 1-7.

R.Das et al. 2008. Performance and power optimization through data compression

in Network-on-Chip architectures. In Proc. of 14th HPCA. 215-225.

R. Das et al. 2013. Catnap: Energy Proportional Multiple Network-on-Chip. In

Proc. of 40th ISCA. 320-331.

H. Esmaeilzadeh et al. 2011. Dark Silicon and the End of Multicore Scaling. In

Proc. of 38th ISCA. 365-376.

Y. Gao et al. 2022. Traffic-Aware Energy-Efficient Hybrid Input Buffer Design for

On-Chip Routers. In Proc. of 15th MCSoC. 395-401.

Y. He et al. 2012. Adaptive data compression on 3D network-on-chips. IPS}

Online Transactions 5, 1 (Jan 2012), 13-20.

Y. He et al. 2015. Runtime Multi-Optimizations for Energy Efficient On-Chip

Interconnections. In Proc. of 33rd ICCD. 455-458.

Y. He et al. 2016. Opportunistic Circuit-Switching for Energy Efficient On-Chip

Networks. In Proc. of 24th VLSI-SoC. 1-6.

Y. He et al. 2020. Energy-Efficient On-Chip Networks through Profiled Hybrid

Switching. In Proc. of 30th GLSVLSI. 241-246.

Y. Hoskote et al. 2007. A 5-GHz Mesh Interconnect for a Teraflops Processor.

IEEE Micro 27, 5 (Nov 2007), 51-61.

H. Jang et al. 2012. A Hybrid Buffer Design with STT-MRAM for On-Chip

Interconnects. In Proc. of 6th NOCS. 193-200.

C. Li et al. 2015. A compact low-power eDRAM-based NoC buffer. In Proc. of

ISLPED’15. 116-121.

S.Liet al. 2009. McPAT: An integrated power, area, and timing modeling frame-

work for multicore and manycore architectures. In Proc. of 42nd MICRO. 469-4380.

TR. Lin et al. 2020. A deep reinforcement learning framework for architectural

exploration: A routerless NoC case study. In Proc. of 26th HPCA. 99-110.

H. Matsutani et al. 2010. Ultra Fine-Grained Run-Time Power Gating of On-Chip

Routers for CMPs. In Proc. of 4th NOCS. 61-68.

MF. Reza et al. 2021. Reinforcement learning enabled routing for high-

performance networks-on-chip. In Proc. of ISCAS’21. 1-5.

L. Shang et al. 2003. Dynamic voltage scaling with links for power optimization

of interconnection networks. In Proceedings of 9th HPCA. 91-102.

R.S. Sutton et al. 2018. Reinforcement learning (2ed): an introduction. MIT Press,

Cambridge, MA, USA.

D. Wang et al. 2008. A link removal methodology for Networks-on-Chip on

reconfigurable systems. In Proc. of FPL’08. 269-274.

K. Wang et al. 2019. High-performance, energy-efficient, fault-tolerant network-

on-chip design using reinforcement learning. In Proc. of DATE’19. 1166-1171.

K. Wang et al. 2019. IntelliNoC: A holistic design framework for energy-efficient

and reliable on-chip communication for manycores. In Proc. of 46th ISCA. 589—

600.

[25] J. Yin et al. 2020. Experiences with ML-Driven Design: A NoC Case Study. In

Proc. of 26th HPCA. 637-648.

H. Zheng et al. 2021. Adapt-noc: A flexible network-on-chip design for heteroge-

neous manycore architectures. In Proc. of 27th HPCA. 723-735.

=
o)

™
=

[26]

	Abstract
	1 Introduction
	2 Background
	2.1 NoC Topologies
	2.2 Reinforcement Learning
	2.3 Related Works

	3 EATS Framework
	3.1 Energy Performance of Different Topologies
	3.2 Hardware Support for Topology Switching
	3.3 Epoch-based Topology Switching
	3.4 EATS Decision Engines

	4 Evaluation Methodology
	5 Results
	6 Conclusion
	Acknowledgments
	References

