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Wireless Sensor Networks for Internet of Things
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Energy Harvestmg Wireless Sensor Nodes (EHWSNS) are
an attractive solution for Internet of Things (loT).

* Autonomous operation

* Perpetual operation

Requires scalable, intelligent and adaptive power
management policies

- ' v wwwilibelium.co m

http://www.libelium.com/wp-content/themes/libelium/images/content/applications/libelium_smart_world_infographic_big.png



ENO-RL System

Energy Flow Energy Neutral Operation (ENO):

* harvested energy equals energy spent

Energy Source | o j o perpetual operation
(Solar Panel) €., PErP P

|

Frerey buffer | ENO-RL OBJECTIVE

l * Minimize battery violations
Lo LI Sensor Node . (100% battery)
* downtimes (0% battery)
* Maximize utility (duty cycle)
e Sensor is always ON
» Solar EHWSN x

— Batt. Profile #2
— Batt. Prom
Byax ~_ /\ |
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Downtimes 8

» Duty cycle determines node
energy consumption
» Hourly data
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Reinforcement Learning (RL)

- Assuming a Markov Decision Process,
1. Perception: What is the state of the agent?
2. Action: Take an action according to a policy that maps

states to actions
3. Reaction: Receive a reward as feedback from the

environment
4. Learning: Learn from the reward to refine the policy.

- OBJECTIVE: Accumulate as much reward as possible

.| Agent What is the
“goodness” or “value”

of taking this action at
—Reward, r— .
' Nextstate | ENVIrONment
l. 7
1

Action, a;

State, sy

e ©® ‘ ;
this state?
Skt 1




Deep Reinforcement Learning

- Use neural networks to predict the state-action value

- Learning via boot-strapping (better estimates from estimates)

v
Approximated with

oarameters @ Expected Return | —
i for action A Choose
State-Action | Function, ~ | Action — REWARD
Pairs: (s, a) f(s,a,0) Expected Return
Critic for action B — Actor
Dueling Double Deep Q-Networks € -greedy
V(s) » Always take greedy action

orXivi1511.06581 (2015). e Start with high € and decrease
gradually (€ - annealing)

Wang, Ziyu, et al. "Dueling I * With probability €, take random
network architectures for .

deep reinforcement State, 5@ - Q(s,a) action

learning." arXiv preprint I

A(s,a)



Single Agent ENO-RL: B-ENO 6

Basic-ENO: Naive implementation of Deep RL for ENO-RL
with a single agent.

State Space: Action Space:
- Battery level * Discrete Duty Cycle,
- Harvested Energy - Dpin < d¢ < Dppax

- Energy Neutral Performance
-  Weather Forecast

. — Battery Solar Radiation
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B-ENO: Performance

PERFORMANCE METRIC (Energy Neutral Operation)
ENO is achieved if there are less than 24 violations in 365

consecutive days

LEARNING TIME

(Time required to achieve ENO (1995-)

90,186 hours (~10 years) \)ﬂ?&’p\\—

LEARNING PENALTY S

(Violations committed during learning)

17,722 violations (~2 years)

OPERATION PENALTY

(Violations committed during greedy implementation from 1995-2018)
O violations




Accelerating B-ENO

Can we decrease the learning time and penalty by
leveraging

- the multiple nodes of the sensor network to

- simultaneously interact with the environment

$

Distributed RL (DiRL)

- Leverage the collective experience to learn better and faster

- Explore wider and faster

experience => (present state, action, reward, next_stateﬂ




Distributed RL (DiRL)

10 agents (nodes) and 1 central learner
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Every day(episode):

1. Nodes execute e-greedy policy -

2. Upload experiences to central server
3. Server executes N; learning steps
4. Server broadcasts new policy to nodes

https://favpng.com/png_view/cloud-hosting-cliparts-web-server-cloud-computing-web-hosting-service-icon-png/BUiv4YG7



Challenges and Proposed Methods

Use Distributed RL (DiRL) to accelerate learning
( )

@ State space is not fully explored -> non-robust policies

N

Partition the state-space via coordinated exploration
(Partitioned-ENO)

® Some agents face higher risks of violating ENO

et

Uniformly distribute the risk of exploration among
nodes (Safe-ENO)

® Playing safe does not give best performance.

N

Dynamically adapt the exploration rate to tradeoff
between learning time and learning cost (Adaptive-ENO)




Comparative Analysis

11

Comments

Algorithm Learning Learning Operation
Time Penalty Penalty
(time to reach ENO) | (# of violations) (# of violations)
B-ENO 10 yrs 17,722 0
(basic)
D-ENO 0.6 yrs 7,930 20
(naive distributed)
P-ENO 0.4 yrs 3,817 16

(partitioned)

S-ENO 0.3 yrs 5,392 3
(safe)
A-ENO 0.2 yrs% 5,921 X 0

(adaptive)

*Penalties are summed across all nodes for D,P,S,A-ENO

Learning time and
penalty too high

Insufficient state
space exploration

State-space
partitioning
distributes risk
non-uniformly

Tradeoff between
learning time and
penalty

Trading off learning
costs dynamically



Learning Time (hours)

Comparison: Learning Time 12

10° A
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Violations

Comparison: Learning Penalty

7500 A
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Partitioning the State Space 14

* High correlation Explored using Explored using
between duty cycles high duty cycle low duty cycle
(actions) and battery
levels (states)

* Bias node duty cycles
to explore different
battery states

Prediction

* Coordinate the nodes
of DiRL to explore
different regions of the
vast problem state-

space Partition the state space using

different exploratory actions.




Comparison: Exploration

Less spread as a result of

naive € — greedy exploration.
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A-ENO: Year Run

Battery Profile for Tokyo, 2002

100%

16

\6/
P <N

bopt + bmargin
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Day

v’ Battery level is well within the required range.
v No violations despite seasonal and diurnal variations



A-ENO: Seasonal Adaptation

Summer A-ENO: TOKYO,2002

g I ©.| ¥ During summer, high
ch ] duty cycles are used
:‘%éi to maximize utility.
£ v Adaptation to sudden
.................. IOW energy days
“930 231 23 233 234 235 236 237 238 239 240
Day

8 Winter A-ENO: TOKYO,2002

e o v During winter, lower
350_8_ duty cycles are used
= oo to save energy.
'?E?.’I- v’ Duty cycle is
$ o2 maximized when

"0 s w2 ms a3 aw v @ @9 5% possible.




CONCLUSION

. Non DIRL solutions are optimal but take
impractically long to learn (B-ENO).

DiRL solutions learn faster but naive
implementations are sub-optimal (D-ENO).

Learning cost and time can be decreased by
partitioning state space exploration (P-ENO).

Partitioning state space distributes risk non-
uniformly which can be traded off for some
performance loss (S-ENO).

Dynamically adjusting exploration rate trades off
risk and performance and enhances learning (A-
ENO).



Thank you

Any Questions or Comments



B-ENO: Learning

Iteration @: TOKYO, 1995
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D-ENO: Learning

4000 B0

LEARNING TIME
5,249 hours (~0.6 years)

LEARNING COST (cumulative)
7,930 violations (~0.9 years)




TOKYD
YEAR AVG_RWD VIOLATIONS
D&Y BATT

1995 1.a@ @ @
1996 1.a d @
1997 1.4 a a
13595 1.4 i 2
1999 1.a d @
2084 1.a d @
2801 a.99 d a
2082 1.a@ @ @
2083 1.a d @
2084 8.98 2 e
2805 1.4 d a
20885 6.99 @ @
2087 1.a d @
2805 1.4 a a
2809 1.4 i 2
2014 1.a d @
2011 1.a d @
2812 1.4 d a
2013 1.a@ @ @
2014 .99 d @
2815 1.4 a a
2816 @.99 i 2
2017 .99 d @
2018 .99 d @

TOTAL Day Violations: 2.8
TOTAL Batt Wioclations: 28.8
TOTAL EMPTY Wiolations: 28.6
TOTAL FULL Violations: @.8

B

D-ENO: Testing

I

EMPTY FULL TOKYO,2004

2 2 Year Run Battery
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Challenges in Deep RL for ENO-RL

- Requires LOTS of training data

- Longer training periods generat(N

* Larger r)umber of violations POLICY EXPERIENCE
(downtimes and overflows)

- Unstable learning due to \’eﬁ”es/

bootstrapping
* Training should include a “correct”

mix of positive and negative

experiences. GOALS:
* Maximizing EXPLORATION of the - Converge to a robust policy
state-space is critical - Minimize learning time
* Unseen states may cause the network to - Maximize node uti|ity
destabilize

(minimize violations during
- Also, maximize utility learning)

 Exploration-exploitation tradeoff



Safe Exploration: S-ENO

B Nodel B Node3 B Node5 i Node7 i Node9
P Node2 BN Node4d B Nodeb6 B Node8 B NodelO

D-ENO P-ENO

1K

Downtimes
0.5K

- High-duty cycle as non-greedy action -> more violations
- Low-duty cycle as non-greedy action -> less violations

- Change the preferred non-greedy action after every episode.
Day 1 Day 2 Day 3 Day 4 Day 5

Node 1 dl dz d3 d4 d5
Node 2 dz d3 d4, d5 d6
Node 3 ds dy ds dg d,

24



Adaptive exploration: A-ENO

- Different nodes -> different environments
- Different environments -> different learning behavior

- Different learning behavior -> different annealing rates for €.

- Increase € if reward is negative.

- Decrease € if reward is positive.

Node 7
—— Node 8

Node 9

Node 10
--- D,P,S-ENO

<
w

=
=
1

e
w
1

o
o

Exploration rate, €

25 35 45 55 65 75 85 95 105 115



Adaptive exploration: A-ENO

0 4000

More diverse Robust performance

expgngnces in the for anomalous states
beginning



