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Wireless Sensor Networks for Internet of Things 
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Energy Harvesting Wireless Sensor Nodes (EHWSNs) are 
an attractive solution for Internet of Things (IoT).

• Autonomous operation
• Perpetual operation
Requires scalable , intelligent and adaptive power 
management policies



ENO-RL System 3

➢ Solar EHWSN
➢ Duty cycle determines node 

energy consumption
➢ Hourly data 

➢ Tokyo: 1995-2018

ENO-RL OBJECTIVE
• Minimize battery violations

• overflows (100% battery)
• downtimes (0% battery)

• Maximize utility (duty cycle)
• Sensor is always ON
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Energy Neutral Operation (ENO):
• harvested energy equals energy spent
• i.e.,  perpetual operation



Reinforcement Learning (RL)

• Assuming a Markov Decision Process,
1. Perception: What is the state of the agent?
2. Action: Take an action according to a policy that maps 

states to actions
3. Reaction: Receive a reward as feedback from the 

environment
4. Learning: Learn from the reward to refine the policy.

• OBJECTIVE: Accumulate as much reward as possible
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What is the 
“goodness” or “value“ 
of taking this action at 

this state?



Deep Reinforcement Learning

• Use neural networks to predict the state-action value

• Learning via boot-strapping (better estimates from estimates)

5

𝜖 -greedy

• Always take greedy action
• With probability 𝜖,  take random

action
• Start with high 𝜖 and decrease 

gradually (𝜖 - annealing)

Dueling Double Deep Q-Networks

State, s

Wang, Ziyu, et al. "Dueling 
network architectures for 
deep reinforcement 
learning." arXiv preprint 
arXiv:1511.06581 (2015).

State-Action 
Pairs: (𝑠, 𝑎)

Function, 
𝑓(𝑠, 𝑎, 𝜃)

Expected Return 
for action 𝐴

Expected Return 
for action 𝐵

Choose 
Action

Approximated with 
parameters 𝜽

Critic Actor

REWARD



Single Agent ENO-RL: B-ENO 6

State Space:
- Battery level
- Harvested Energy
- Energy Neutral Performance
- Weather Forecast

Action Space:
• Discrete Duty Cycle, 

- 𝐷𝑚𝑖𝑛 ≤ 𝑑𝑡 ≤ 𝐷𝑚𝑎𝑥

Basic-ENO: Naïve implementation of Deep RL for ENO-RL 
with a single agent.

https://favpng.com/png_view/wireless-cliparts-wireless-sensor-network-internet-of-things-clip-art-png/JKvwgxaM

High Rewards

Low Rewards

Low Rewards



B-ENO: Performance 7

PERFORMANCE METRIC (Energy Neutral Operation)
ENO is achieved if there are less than 24 violations in 365 
consecutive days

LEARNING TIME
(Time required to achieve ENO (1995-)

90,186 hours (~10 years) 

LEARNING PENALTY
(Violations committed during learning)

17,722 violations (~2 years)

OPERATION PENALTY
(Violations committed during greedy implementation from 1995-2018)

0 violations



Distributed RL (DiRL)
• Leverage the collective experience to learn better and faster

• Explore wider and faster

experience => (present_state, action, reward, next_state)

Accelerating B-ENO

Can we decrease the learning time and penalty by 
leveraging

• the multiple nodes of the sensor network to

• simultaneously interact with the environment
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Distributed RL (DiRL) 9

10 agents (nodes) and 1 central learner

Every day(episode):

1. Nodes execute e-greedy policy

2. Upload experiences to central server

3. Server executes 𝑁𝑙 learning steps

4. Server broadcasts new policy to nodes
https://favpng.com/png_view/cloud-hosting-cliparts-web-server-cloud-computing-web-hosting-service-icon-png/BUiv4YG7

Server



Challenges and Proposed Methods

1. Use Distributed RL (DiRL) to accelerate learning   
(Distributed-ENO)
 State space is not fully explored -> non-robust policies

2. Partition the state-space via coordinated exploration 
(Partitioned-ENO)
 Some agents face higher risks of  violating ENO

3. Uniformly distribute the risk of exploration among 
nodes (Safe-ENO)
 Playing safe does not give best performance.

4. Dynamically adapt the exploration rate to tradeoff 
between learning time and learning cost (Adaptive-ENO)
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Comparative Analysis 11

Algorithm Learning 
Time

(time to reach ENO)

Learning 
Penalty

(# of violations)

Operation
Penalty

(# of violations)

Comments

B-ENO
(basic)

10 yrs 17,722 0 Learning time and 
penalty too high

D-ENO
(naïve distributed)

0.6 yrs 7,930 20 Insufficient state 
space exploration

P-ENO
(partitioned)

0.4 yrs 8,817 16 State-space 
partitioning 
distributes risk
non-uniformly

S-ENO
(safe)

0.3 yrs 5,392 8 Tradeoff between 
learning time and 
penalty

A-ENO
(adaptive)

0.2 yrs 5,921 0 Trading off learning 
costs dynamically

Faster

Safer

B
etter

*Penalties are summed across all nodes for D,P,S,A-ENO



Comparison: Learning Time 12



Comparison: Learning Penalty 13



Partitioning the State Space 14

• High correlation 
between duty cycles 
(actions) and battery 
levels (states)

• Bias node duty cycles 
to explore different 
battery states

• Coordinate the nodes 
of DiRL to explore 
different regions of the 
vast problem state-
space Partition the state space using 

different exploratory actions.

Explored using 
high duty cycle

Explored using 
low duty cycle



Comparison: Exploration 15

More spread 
in state space 
resulting in 
better learning

Less spread as a result of 
naïve 𝜖 – greedy exploration.



A-ENO: Year Run 16

✓ Battery level is well within the required range.
✓No violations despite seasonal and diurnal variations



A-ENO: Seasonal Adaptation 17

✓ During summer, high 
duty cycles are used 
to maximize utility.

✓ Adaptation to sudden 
low energy days

✓ During winter, lower 
duty cycles are used 
to save energy.

✓ Duty cycle is 
maximized when 
possible.

Winter

Summer



CONCLUSION
1. Non DiRL solutions are optimal but take 

impractically long to learn (B-ENO).

2. DiRL solutions learn faster but naïve 
implementations are sub-optimal (D-ENO).

3. Learning cost and time can be decreased by 
partitioning state space exploration (P-ENO).

4. Partitioning state space distributes risk non-
uniformly which can be traded off for some 
performance loss (S-ENO).

5. Dynamically adjusting exploration rate trades off 
risk and performance and enhances learning (A-
ENO).
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Thank you 
Any Questions or Comments
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B-ENO: Learning 20



D-ENO: Learning 21

LEARNING TIME

5,249 hours (~0.6 years) 

LEARNING COST (cumulative)

7,930 violations (~0.9 years)



D-ENO: Testing 22



Challenges in Deep RL for ENO-RL

• Requires LOTS of training data
 Longer training periods
 Larger number of violations 

(downtimes and overflows)

• Unstable learning due to 
bootstrapping
 Training should include a “correct” 

mix of positive and negative 
experiences.

 Maximizing EXPLORATION of the 
state-space is critical
 Unseen states may cause the network to 

destabilize

• Also, maximize utility
 Exploration-exploitation tradeoff
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POLICY EXPERIENCE

generates

refines

GOALS:
- Converge to a robust policy
- Minimize learning time 
- Maximize node utility 

(minimize violations during 
learning)



Safe Exploration: S-ENO

• High-duty cycle as non-greedy action -> more violations

• Low-duty cycle as non-greedy action -> less violations

• Change the preferred non-greedy action after every episode.
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Day 1 Day 2 Day 3 Day 4 Day 5 …

Node 1 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 …

Node 2 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 …

Node 3 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 …

Node 4 𝑑4 𝑑5 𝑑6 𝑑7 𝑑8 …

… … … … … … …



Adaptive exploration: A-ENO

• Different nodes -> different environments

• Different environments -> different learning behavior

• Different learning behavior -> different annealing rates for 𝜖.

• Increase 𝜖 if reward is negative.

• Decrease 𝜖 if reward is positive.
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Adaptive exploration: A-ENO 26

Robust performance 

for anomalous states

More diverse 

experiences in the 

beginning


