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Billions of Autonomous Sensor Nodes

* Energy Harvesting Wireless Sensor
Nodes (EHVVSN)

* sense, process and transmit data
wirelessly e ool

* harvest energy from the ambient | . : |y =3
environment
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Autonomous
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Operation

* Millions of usage |
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sRetail (11% CAGR) sEnergy (24% CAGR) « Other (27% CAGR)



Energy Neutrality and multiple objectives

Energy Neutral Operation

* Balancing energy generation and
consumption

[Nakamura et al 2017, SenStick: Comprehensive

° Sensing Platform with an Ultra Tiny All-In-One Sensor
Modern EHWSNSs are multi-task oo ey

* Sensing §

* Processing i Node AUtiIity ENO

------ { \
 Communication = |
* Allocate energy among tasks
* To maximize utility

* According to user priority Total Available Energy

* Only known during runtime (not a
priori)




Optimizing over multiple objectives

* Use Multi-objective Reinforcement Learning (MORL) to
learn the energy management policy

* General Multi-Objective MDP Formulation
e Continuous States and Actions

| |
| |
| |
: Proposal * Single/Multiple rewards |
: |
| * Novel low-compute MORL algorithms |
| |
- |
| * Near-optimal policies
* Better than scalarization methods

* Low learning costs
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: Results :
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: e Runtime Tradeoffs :



Single-objective RL (SORL)
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Multi-objective RL (MORL)
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3. Optimizing over
Multiple Objectives



Challenges of learning with many rewards

Scalarization
Mix rewards into one scalar

* Aoudia et al., 2018:

* Multiply rewards together
* Confounds rewards (noisy interference)

* Ferreira et al., 201 8:
* Add rewards together
* Tradeoffs not possible
* Prior knowledge of relative weights
required

 Hsu et. al., 201 4:

* Complicated unintuitive reward function
* Unexpected behavior (reward hacking)

Single Scalar Reward



Proposed MORL Framework

|. General Multi-Objective MDP Formulation

* Rewards
* Simpler, precise, intuitive rewards
* Multiple sources of rewards (reward vector) For efficient

* States learning
 Continuous

* Inclusion of temporal information (more Markov)

* Actions
* Continuous
* Relative actions (Safe actions)

2. Low compute MORL algorithms (based on DDPG)

e Runtime MORL [Lillicrap et.al., 2015]
* Runtime tradeoffs using pre-learned greedy policies

* Off-policy MORL

* Learn tradeoff policies from scratch with low learning costs



Simulation Parameters

Battery (Rechargeable Li-lon) 2000 mAh
Solar Panel 100 mA

Foldable Solar panel Li-lon Battery
(100 mAh) (2000mAh)

Waspmote Sensor Platform |7 mA
ATmegal281 @15 MHz)

Comm. Device (Zigbee 3) 40 mA
Sensor (GPS) 32 mA
TOTAL 89 ~ 100 mA

Waspmote

Parameter | maximum value minimum value
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Requests, d: | Zsas = 5% of Dpiaz  Zgn ="0.5% 0f Bias

https://development.libelium.com/waspmote-technical-gsuide/
https://weffsas.com/shop/lithium-ion-battery-3-7v-2000mah/



https://development.libelium.com/waspmote-technical-guide/
https://weffsas.com/shop/lithium-ion-battery-3-7v-2000mah/

Experimental Results

* Near-optimal Performance
* Superior to scalarization methods

* Low learning cost
* Safer Exploration
* Faster learning



Multiple Objectives
Energy Neutral Performance (ENP)
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Energy Scheduling

* At each timestep, the node allocates energy budget for
* Sensing (Ww.r.t. user requirements)
* Transmission (w.r.t. channel conditions)

* By taking the user-defined relative priority (w) between

* Sensing (Wsense)
* Transmission (w¢y)

* Energy-neutral performance (wgyp)

* While ensuring long-term energy neutrality
* Lower Downtimes = Better Energy Neutrality



Runtime Tradeoffs (2-tasks)

Off-policy MORL Algorithm
* Tradeoff between sensing, transmission and energy-neutrality

Increasing wgense increases sense-utility correspondingly:
red — green — — blue

W = (Wsense, Wex, WenP)
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Runtime Tradeoffs (2-tasks)

Off-policy MORL Algorithm
* Tradeoff between sensing, transmission and energy-neutrality

* W = (wsense;wtxJ a)ENP)

Less priority More priority
for ENO W = (Wsense, Wix, WENP) for ENO
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Runtime Tradeoffs (2-tasks)

Off-policy MORL Algorithm
* Tradeoff between sensing, transmission and energy-neutrality

* W = (a)gense;wtxJ a)ENP)

Less priority More priority
for ENO W = (Wsense, Wex, Wene) for ENO
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Runtime Tradeoffs (2-tasks)

Off-policy MORL Algorithm
* Tradeoff between sensing, transmission and energy-neutrality

* W = ((l)gense;wtxJ a)ENP)

Less priority More priority
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Conclusion
* EHWSNs require RL based methods for

* Adaptive, scalable policies

e RL is difficult for EHVWSNs due to

* Difficult problem formulation

* High learning costs

* High computation costs

* Multiple objective optimization problem

* Traditional MDPs and scalarization methods
* Are sub-optimal
* Have high-learning costs
* Cannot tradeoff
* Require complicated reward functions

* Proposed MORL framework
* Can learn near-optimal policies
* With low learning costs
* Can tradeoff at runtime
* Simple/precise and diverse rewards can be used
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Thank You

Your questions/comments and feedback are
most welcome



