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Quantum framework for reinforcement learning: Integrating the Markov
decision process, quantum arithmetic, and trajectory search
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This paper introduces a quantum framework for addressing reinforcement learning (RL) tasks, grounded in
the quantum principles and leveraging a fully quantum model of the classical Markov decision process. By
employing quantum concepts and a quantum search algorithm, this work presents the implementation and
optimization of the agent-environment interactions entirely within the quantum domain, eliminating reliance
on classical computations. Key contributions include the quantum-based state transitions, return calculation,
and trajectory search mechanism that utilize quantum principles to demonstrate the realization of RL processes
through quantum phenomena. The implementation emphasizes the fundamental role of quantum superposition
in enhancing computational efficiency for RL tasks. Results demonstrate the capacity of a quantum model to
achieve quantum enhancement in RL, highlighting the potential of fully quantum implementations in decision-
making tasks. This work not only underscores the applicability of quantum computing in machine learning but

also contributes to the field of quantum reinforcement learning by offering a robust framework for understanding

and exploiting quantum computing in RL systems.
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I. INTRODUCTION

Reinforcement learning (RL) is a branch of machine learn-
ing focused on decision making by autonomous agents [1,2].
Examples of such agents include robots and self-driving cars.
In RL, these agents learn to complete tasks through trial
and error without direct human guidance [3]. By tackling
sequential decision-making challenges in uncertain environ-
ments, RL holds significant potential for solving complex
decision-making problems across various real-world scenar-
ios such as autonomous driving [4], robotics [5], and game
playing [6,7]. However, classical RL approaches encounter
significant challenges in the high-dimensional environments,
where the state and action spaces grow exponentially with in-
creasing problem size, making RL computationally expensive
[8]. Additionally, training RL models can demand extensive
resources and time, particularly when dealing with stochastic
environments [9]. These scalability and computational chal-
lenges have motivated the exploration of alternative methods
to enhance traditional RL efficiency and effectiveness.

Since advancements in quantum hardware and algo-
rithms offer the capability of integrating quantum computing
(QC) with machine learning [10], researchers have proposed
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hybrid quantum-classical methods to address the compu-
tational challenges of classical RL. Several studies have
introduced quantum-inspired policy optimization algorithms
and employed quantum circuits for specific classical compo-
nents of RL to explore the potential improvements offered
by quantum computing in RL [11]. While hybrid approaches
have shown promise, they are often constrained by the
additional computational resources required to facilitate com-
munication between classical and quantum systems. This
affects the overall performance of the system and limits the
full potential of quantum computing. Furthermore, the partial
use of quantum techniques leaves the full potential of quantum
computing untapped. These challenges underscore the need
for a comprehensive quantum framework for reinforcement
learning. We aim to address these bottlenecks associated with
classical-quantum interaction and unlock the full potential
of quantum mechanics by designing a RL framework where
all computations are performed entirely within the quantum
domain.

In this work, we propose a complete quantum framework
for RL problems, aiming to enhance and extend the principles
of classical RL. Classical RL frameworks involve an agent
interacting with an environment through a series of states,
actions, and rewards, where the agent learns an optimal policy
to maximize cumulative rewards over time. This is typically
achieved by solving a Markov decision process (MDP), which
models state transitions and reward structures. Classical RL
often relies on iterative algorithms like Q-learning or policy
gradient methods. Building on these foundations, we pro-
vide a detailed description of the quantum implementation
of a classical MDP, including state transitions that closely
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mirror those in a classical MDP. Additionally, we describe
a quantum approach for calculating cumulative rewards and
a trajectory search mechanism leveraging quantum Grover’s
algorithm [12]. The primary contribution of our work lies in
demonstrating how reinforcement learning tasks can be solved
exclusively using quantum methods, without any classical
computations. The contributions of this work are listed as
follows:

(1) Quantum representation of MDP: We develop a quan-
tum representation of a classical MDP by applying the
principles of quantum superposition. This approach encodes
multiple states and actions simultaneously, enabling the sys-
tem to explore numerous state-action pairs in parallel.

(2) Quantum state transitions: We demonstrate the interac-
tions between the agent and the environment in the quantum
domain, illustrating how state transitions are efficiently per-
formed using quantum principles.

(3) Quantum return calculation: We introduce a quantum
approach for return calculation that leverages quantum arith-
metic.

(4) Quantum trajectory search: We implement Grover’s
algorithm [12] for trajectory search, facilitating efficient
exploration of trajectory sequences in RL tasks. This
quantum-enhanced method provides substantial acceleration
in identifying optimal trajectories.

This paper is organized as follows: Section II reviews
previous studies on integrating RL with QC. Section III in-
troduces key concepts in classical reinforcement learning and
quantum computing. Section IV details our quantum imple-
mentation, including circuit designs, quantum interactions,
and trajectory search. Section V presents demonstrations and
their results, and Secs. VI and VII summarize insights and
propose future research directions.

II. RELATED WORK

Research in quantum reinforcement learning (QRL) covers
a variety of approaches, ranging from those that are mainly
classical but inspired by quantum principles to those that
leverage fully quantum systems.

A. Quantum-inspired reinforcement learning

The earliest idea of integrating quantum computing (QC)
with reinforcement learning (RL) relied on quantum superpo-
sition and amplitude amplification to address the limitations
of classical RL, such as slow learning rates, the exploration-
exploitation tradeoff, and high CPU usage [11]. Early research
focused on representing RL actions as quantum superposi-
tion states in value-based algorithms [13—17]. Subsequently,
advancements were made by employing quantum super-
position to store policies and utilizing Grover’s algorithm
for the action-value function [18,19]. Recent study has ex-
plored the quantum representation of experiences in deep RL
[20]. Researchers have also demonstrated the applicability
of quantum-inspired RL (QiRL) approaches in diverse do-
mains, including mobile robotics [14,17], unmanned aerial
vehicles (UAVs) [21], and clinical decision making [22,23].
These studies highlight the potential of quantum computing to
overcome the limitations of classical RL by achieving a better

balance between exploration and exploitation, accelerating the
learning process, and reducing computational costs [11].

B. VQC-based reinforcement learning

Many studies have explored combining RL with QC by
employing variational quantum circuits (VQCs) as substitutes
for classical neural networks in deep RL algorithms to ad-
dress challenges in large state and action spaces, where the
previous QiRL approach encounters limitations [24]. These
efforts were initiated with the use of VQCs in double deep
Q-learning as function approximators for simple discrete en-
vironments like Frozen Lake [25], and gradually extended
to more complex settings, such as Cart Pole [26] and Atari
games [27], and continuous action spaces [28]. Some research
[29] has highlighted the importance of architectural design
and hyperparameters in shaping RL agent performance which
contributed to exponential reductions in model complexity
compared to classical methods. Beyond double Q-learning, al-
gorithms like REINFORCE [24,30] and Actor-Critic [31,32]
have successfully employed VQCs to directly approximate
policies. These advancements demonstrate that the VQC-
based approaches can overcome classical RL limitations by
achieving faster convergence, consuming less memory, and
utilizing fewer parameters in complex RL environments.

C. Reinforcement learning with quantum subroutines

Recent advancements in QRL focus on leveraging quantum
subroutines on fault-tolerant quantum computers to enhance
traditional RL processes. The authors [33] proposed quantum
value iteration algorithm combining quantum mean estima-
tion and quantum maximum finding into a classical value
iteration algorithm to reduce sample complexity. Similarly,
previous work [34] introduced quantum policy iteration algo-
rithm, alternating between quantum policy evaluation, which
uses quantum linear system solvers to encode the policy value
function, and classical policy improvement step based on
quantum state measurements. These algorithms demonstrate
quadratic speedups in sample complexity compared to classi-
cal methods.

D. Full quantum reinforcement learning

Recent research [35] underscores the potential of a fully
quantum approach to classical RL through the introduction
of a quantum policy iteration framework. This approach eval-
uates policies by generating a superposition of all possible
trajectories within a MDP. By leveraging amplitude estima-
tion for policy evaluation and Grover’s algorithm for policy
improvement, the framework significantly reduces the sample
complexity of a classical RL algorithm.

In our work, we aim to address the limitations that pre-
vious works have encountered. Methods employing VQCs
encoded only the agent as a quantum component while re-
taining the environment in the classical domain, restricting
the quantum interactions of agent and environment. Other
approaches, such as QiRL and quantum subroutines, relied
on classical computations, preventing the realization of fully
quantum operations. Furthermore, while prior work on a fully
quantum system [35] focused on a single-state bandit setting
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with only one state, our framework extends to more com-
plex decision-making scenarios by implementing a finite-state
Markov decision process (MDP) with multiple states, actions,
and stochastic transitions. This generalization makes our
model applicable to a broader range of practical reinforcement
learning problems beyond simple banditlike tasks. Our frame-
work encodes both the agent and the environment as quantum
components, enabling sequential agent-environment interac-
tions across multiple time steps. It incorporates quantum state
transitions and return calculations using quantum arithmetic.
Our approach enables the quantum agent to explore numerous
sequences of interactions simultaneously. Such parallelism
enables efficient exploration of trajectories, allowing the agent
to evaluate multiple potential outcomes concurrently and ac-
celerate the discovery of high-reward policies. In contrast to
this prior work, which employed Grover’s search to iden-
tify high-value actions in a static, single-step scenario, our
framework applies Grover’s algorithm to search for an optimal
trajectory among all possible full-length quantum trajectories
in a multistate, multistep MDP. By designing a quantum oracle
that marks trajectories based on their cumulative return, our
approach enables direct optimization of agent’s performance
over multiple time steps. This significantly expands the ap-
plicability of Grover’s search beyond action-level selection,
enabling efficient discovery of optimal policies in multistep
reinforcement learning tasks.

To further advance fully quantum RL, our framework en-
ables direct interaction between the quantum agent and the
environment entirely within the quantum domain. The concept
of a quantum-accessible environment was first introduced in
[36] where the agent and environment interact through an in-
termediate register. In comparison, our method enables direct
communication between the agent and environment, eliminat-
ing the need for an additional layer. This direct interaction
allows for the simultaneous evaluation of multiple states and
actions, increasing computational parallelism and enabling
faster exploration of the state-action space. Furthermore, since
these interactions are entirely within the quantum domain, this
will remove the classical-quantum conversions and achieve
the complete quantum interactions. Our framework facili-
tates optimization by a quantum search algorithm directly
to the quantum states generated through these interactions.
This approach eliminates reliance on classical subroutines and
achieve significant computational speedups. Therefore, our
work is an attempt to implement a complete quantum frame-
work for reinforcement learning by integrating the quantum
realization of the classical Markov decision process (MDP).

III. BACKGROUND
A. Reinforcement learning

Reinforcement learning (RL) is an interaction-based
machine-learning paradigm, focusing on agents to make se-
quential decisions in dynamic environments with the goal of
maximizing long-term rewards. This paradigm involves an
iterative learning process where the agent explores various ac-
tions to understand their impact and exploits this knowledge to
achieve optimal outcomes [37]. In RL, an agent interacts with
an environment that provides feedback in the form of states
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FIG. 1. The agent-environment interaction in a Markov decision
process (MDP) [1].

and rewards. States reflect the current configuration of the
environment, actions represent the agent’s possible choices,
and rewards are numerical signals received as feedback for
the agent’s actions, guiding its learning process [38].

RL problems are commonly modeled as Markov decision
processes (MDPs), a mathematical framework well suited for
decision-making tasks in uncertain environments. A MDP is
formally defined as a 4-tuple S, A, R(-), P(:) [2], where S
is the set of states where the agent can observe from the
environment. A is the set of actions the agent can execute
in the environment. R(s,a) is the reward function of the envi-
ronment. The value R(s, a) := E[r/|s, = s, a;, = a] represents
the reward r; received when action a, is performed in state s;.
Finally, P(s;+1ls;, a,) is the state transition function. The value
P(s,41) gives the probability that the environment transitions
to state s,41, if the agent executes action g, in state s, at
time ¢ [11]. Specifically, the agent and environment interact
at each of a sequence of discrete time steps, t = 0, 1, 2,
3,... . At each time step f, the agent receives a represen-
tation of the environment’s state s; € S, and based on this,
selects an action a; € A. The agent receives a numerical re-
ward r; € R C R and transitions to a new state s,.; € S. The
interaction between the agent and the environment generates a
trajectory so, do, 1o, S1, d1, ¥1, S2, d2, 12, ... [1]. This process
is described in Fig. 1. This process can terminate by reaching
a terminal state or a maximum time step ¢t = 7.

The primary goal of RL is for the agent to learn op-
timal actions for each state that optimally maximizes the
expected cumulative reward through the interactions with the
environment. Balancing exploration (trying new actions) and
exploitation (using known actions) is crucial for effective
learning in RL, making it a comprehensive and dynamic ap-
proach distinct from other machine-learning paradigms.

Q learning

RL methods can generally be classified into two broad cat-
egories: value based and policy gradient based. Value-based
methods focus on estimating a value function and derive poli-
cies from it. Examples include Q-learning and SARSA (state-
action-reward-state-action). Policy-gradient methods directly
optimize the policy by maximizing the expected cumulative
reward through gradient ascent. Examples include REIN-
FORCE and Actor-Critic methods. In this work, we focus
on value-based Q-learning algorithm. Q-learning is a widely
used, model-free reinforcement learning algorithm that es-
timates the optimal policy by updating a Q-value function.
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FIG. 2. Quantum circuit for Grover’s algorithm on two qubits,
searching for the target state |11) generated by QISKIT [44].
The measurement was performed using IBM quantum processor
(ibm_brisbane, version: 1.1.62, processor type: Eagle r3, qubits:
127). Output distribution is displayed on the right, showing the
search state |11) with the highest count.

The updates are based on the Bellman equation [Eq. (1) [1]]
O(s,a) = Q(s, a) +alr +y max O(s', ') — O(s, @)]. (1)

The Q-learning equation updates the Q-value Q(s, a), which
represents the expected cumulative reward for taking action a
in state s. r is the immediate reward, and y is the discount
factor that weighs future rewards. The term max, Q(s’, @)
represents the maximum Q-value for the next state s’ across
all possible actions ¢’ in that state. The learning rate « con-
trols how much new information updates the current Q-value.
This formulation enables the agent to improve its policy by
iteratively refining its value estimates.

B. Quantum computing

Quantum computing (QC) combines quantum mechanics
with computer science to enable advanced computation and
information processing [39]. In QC, information is repre-
sented using qubits, which can exist in superposition states.
This unique property allows qubits to process vast amounts of
information simultaneously. The quantum computation pro-
cess consists of three primary steps. The first step is state
initialization, where qubits are typically prepared into uniform
superposition. The second step involves the application of
quantum gates to perform the computation. These gates are
represented by unitary matrices, ensuring that transformations
applied to quantum states are reversible and that the total
probability is preserved [40]. The final step is measurement,
where qubits collapse from their quantum superposition into
classical states, producing probabilistic outcomes that repre-
sent the results of the computation. These steps collectively
enable the construction of complex quantum algorithms ca-
pable of solving advanced problems such as Shor’s algorithm
for integer factorization [41-43] and Grover’s algorithm for
searching unsorted data sets [12]. In this work, Grover’s al-
gorithm is used as a quantum subroutine to search through
possible trajectories and identify those that yield the highest
return. Figure 2 presents a simple example of a Grover’s
algorithm quantum circuit for two qubits, which searches for
the target state |11). This circuit illustrates the key steps of the
algorithm, which include initialization, computation (oracle
marking and amplitude amplification), and measurement. It
conceptually demonstrates how Grover’s mechanism drives
our quantum trajectory search process presented in Sec. V.

IV. METHOD

A. Quantum implementation of Markov decision process

In reinforcement learning, the agent interacts with the envi-
ronment within a Markov decision process (MDP) framework.
The agent selects actions based on a policy, which maps states
to actions, while the environment determines state transitions
and provides rewards. This interaction is cyclic: the agent ob-
serves a state, takes an action, receives a reward, and updates
its policy to maximize cumulative rewards over time. Key
MDP components include states, actions, a state transition
function, and a reward function. For the MDP framework,
we consider a simple stochastic environment with four states
(s0, S1, 82, s3) and two actions (ag, a; ), where the agent moves
from one state to another with certain probabilities depending
on the chosen action. For example, if the agent is in state s
and selects action aj, there is some probability that it will
move to s, and some probability it will remain in sy or will
move to another state. This probability of transition from one
state to another is determined by the state transition function.
The reward function assigns a numerical value to each tran-
sition, representing the benefit of moving from one state to
another. For instance, transitioning to state s; might yield a
reward . The goal of the agent is to find the optimal policy, a
strategy that determines which action to take in each state. The
optimal policy aims to maximize the total reward the agent
can collect over time. Classical Q-learning solves this problem
by allowing the agent to learn from its interactions with the
environment. The agent explores the states, takes actions, and
observes the resulting rewards and transitions. It builds a table,
known as a Q-table, that estimates the expected cumulative
reward for each state-action pair. By balancing exploration
(trying new actions) and exploitation (choosing actions with
the highest known rewards), the agent identifies the optimal
actions for each state.

In a classical system, these MDP components are encoded
using classical bits. States S and actions A are elements of
finite sets, ranging from simple discrete values to complex
vectors. The state transition function is usually expressed as
a matrix and rewards are typically regarded as real numbers.
However, in the quantum system, the MDP formulation lies in
the use of the quantum superposition principle and quantum
operations, such as unitary matrices, to define the agent, en-
vironment, and their interactions. In the following subsection,
we first present the initialization of states and actions in the
quantum domain. Then, we describe the quantum state transi-
tion function and quantum reward function.

1. Agent and environment on quantum computer

State and action initialization. We are focusing on a classi-
cal MDP circuit comprising four states S = {so, 51, 52, 53} and
two actions A = {ap, a;}. In the quantum implementation of
this MDP, we define a state space S and an action space A. For
the state space S, each state s € S is encoded as an orthonor-
mal basis vector in a Hilbert space and expressed as a quantum
state |s). Similarly, all the possible actions are represented as
vectors |a) € A in the action space A. To represent N distinct
states in a quantum system, n qubits are required, where n =
log,(N), to encode all the possible states into quantum states.
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Therefore, our quantum MDP necessitates two qubits for the
state set S and one qubit for the action set A. These qubits
can be described as strings of qubits on a quantum computer,
where each string represents the binary representation of an
integer corresponding to that quantum state, i.e.,

so =100), s =101), s, =[10), s3 =|11),
ap=10), a; =|1).

As we are implementing MDP in the quantum domain,
these states and actions can be prepared into superposition by
using Hadamard transformation. This process can initialize
qubits as a uniform combination of quantum states for all
states and actions within their respective spaces. For the state
space S, we define the initial ground state of each state register
as |05) = |0). Applying the Hadamard transformation to these
registers generates a uniform superposition of quantum states,
as formulated in Eq. (2):

N—1

H(I0) ®10) =Y culsi) - )

n=0

The output quantum state is a uniform superposition of the
basis states [so), [s1), ..., |s,), within its state space S. N
represents the total number of states in that space. Each
coefficient ¢, represents the amplitude of the corresponding
basis state and is uniformly set to J_IN’ ensuring that the re-
sulting quantum state is properly normalized. This satisfies
the normalization condition ZQ’: |c,|? = 1. In the case of a
two-qubit state space where N = 4, each amplitude becomes
Cp = 2

Similarly, the set of possible actions is encoded using the
Hadamard operator to create a uniform superposition of all
actions that belong to the action space A, as formalized in
Eq. (3). The initial ground state of the action register is defined
as |0,) = |0), and applying the Hadamard transformation re-
sults in a uniform superposition where each amplitude is ¢, =
\/Lj, satisfying the normalization condition within the action
space:

N—-1
H04) = culan). 3)
n=0

At the initial stage of the quantum Markov decision pro-
cess (QMDP), all state and action qubits are initialized into
uniform superposition within their respective quantum spaces.
This process is described by Eq. (4) for the state space S and
Eq. (5) for the action space A. After this initialization, the re-
sulting quantum state represents the probability distribution of
all possible state-action pairs. Since the states and actions are
initialized in uniform superposition, the resulting distribution
is also uniform:

1 1 1 1
H(10:) ®10;)) = 7100) + 5 [01) + = [10) + S [11) . (4)

1 1
HIOa)=—2I0)+EI1)-

State transition function. After preparing all states in the
state space S and all actions in the action space A as uni-
form superposition quantum states, we then consider the state

®)

transition function, which defines the likelihood of transition-
ing from one state to another given a specific action. In a
classical MDP, the state transition function P(s’|s, a) deter-
mines the probability of transitioning to next state s’ given
the current state s and action a. In a quantum circuit, these
probabilities are encoded in the amplitudes of quantum states,
where the squared magnitudes of the amplitudes correspond
to probabilities. This is achieved by applying R,(f) to an
ancillary qubit initialized in the |0) state, producing a superpo-
sition in which the probabilities of measuring |0) and |1) are
cosz(%) and sinz(%), respectively. To encode classical transi-
tion probabilities P(s’|s, a), the rotation angle 6 is calculated
as 6 = 2 arcsin(4/P(s’|s, @)). In our work, we use multicon-
trolled R, () gates to apply these rotations conditionally based
on the current state |s) and action |a). The rotation is applied
only when the control qubits match a specific state-action
pair (|s*), |a*)), where |s*) € S, |a*) € A. Equation (6) is a
mathematical representation of this quantum state transition
process where the controlled R,(f) gates apply a rotation
to an ancillary qubit |Oy) by an angle 0, depending on the
state-action pair, thereby determining the next state |s’) € S:

|s) 1a) Ry(0) |0y)  if[s) = |s%),
CRy(0)(Is) la) |0y)) = la) = la*),
s) |a) |Oy) else.

(6)
Reward function. The reward function in a classical MDP
is defined as R(s, a), where specific state-action pairs (s, a)
determine a reward value. The Controlled-NOT (CNOT) gate
models this behavior conditionally, where the control qubits
(representing the current state |s) and action |a)) dictate
whether the target qubit (representing the reward |r)) is
flipped. In our quantum circuit, the next state qubits |s’) are
used as control qubits since they represent the result of tran-
sitioning from a specific state-action pair to a next state |s’),
implicitly encoding the state-action pair (s, a) in determining
the reward. The CNOT gate works conditionally such that the
reward qubit |r), initially set to |0), is flipped to |1) if the next
state matches a condition where a reward exists. This ensures
that the reward qubit reflects the reward function based on the
transition outcome (next state), determined by the state-action
pair. The mathematical formulation of the reward function can
be expressed as Eq. (7) where the CNOT gate flips an ancillary
qubit |0,) when the control qubits match valid next states |s'),
thereby generating the corresponding reward:

CNOT(Is')10,)) = Is") IS ©0,) . )

2. Agent and environment single interaction
on quantum computer

Building upon the quantum implementation of MDP com-
ponents discussed earlier, the interaction between the agent
and the environment in a quantum Markov decision process
(QMDP) is governed by quantum dynamics and can be under-
stood as a sequence of quantum operations.

At each interaction step, the agent receives the current
state |s) of the environment. Then, the agent applies a unitary
operation that corresponds to its policy m encoded as |a).
This process of action selection influences the evolution of
the environment’s state, resulting in a transition of the system
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to the next state |s’). Then, the agent receives the reward |r)
based on the next state |s'). In the context of QMDP, this
agent-environment interaction can be modeled using a unitary
operator U(S @ A ® S ® R), which prepares a quantum state
representing the distribution of trajectories for the state, ac-
tion, next state, and reward sequence. This quantum state can
be expressed as follows in Eq. (8):

N

|6) = ley risals) la) Is') )", ®)

n=1

where ¢y 5, represents the amplitude that the system tran-
sitions to the next state |s’) with reward |r), given by the
current state |s) and action |a). The square of the amplitude
|y ris.al* corresponds to the probability of the transition and
N represents the total number of trajectories in that quantum
interaction.

B. Agent-environment quantum interactions
over multiple time steps

To extend the QMDP framework over T time steps, we
need to account for the quantum state transition and the
calculation of cumulative rewards. At each time step ¢, the
agent receives a state |s;), performs an action |a,), and the
environment responds by transitioning to a new state |s;) while
providing a reward |r,). This process is repeated over 7 time
steps, ensuring that the next state |s;) at # becomes the current
state |s,) for the subsequent time step.

In a quantum circuit, this state transition can be seen as
transferring the outcome of the next state qubits (represent-
ing |s;)) to the current state qubits for the next time step
(denoting |s,+1)). The CNOT gate can be used to propagate
these states because it conditionally transfers information in
a quantum system. It works well for state transitions because
if the control qubit (|s;)) is |0), the target qubit (|s,+;)) remains
unchanged; however, if the control qubit (|s;)) is |1), the target
qubit (|s,11)) is flipped. This effectively copies the state of |s])
onto |s;y1) in a way that the next state at r = 0 becomes the
current state at + = 1. This behavior ensures that information
about the next state |s;) is conditionally propagated to the
target qubits (current state qubit |s;;)) for the next time step
while preserving the state information. In our quantum circuit,
where states, actions, and next states exist in superposition, the
CNOT gate can also preserve this quantum superposition and
enable all possible state transitions to occur simultaneously.

Below is a description of how this process unfolds over
T time steps, including the corresponding quantum operators
that govern state transitions and rewards. The approach builds
on the single interaction discussed earlier and extends it to
a sequence of interactions. Initially at time step ¢ = 0, the
agent starts at state |so), takes an action |ap), transitions to the
next state |s;), and receives a reward |ro). The next state |s)
propagates to the subsequent time step. At time step # = 1, the
agent observes the new state |s;) generated at r = 0, selects a
new action |a;), and the environment transitions to the next
state |s}) and provides the reward |r;). Once again, the next
state |s}) becomes the current state for the subsequent time
step t = 2. In this way, the interaction process will occur
for T time steps. The quantum state distribution at ¢ = 1

can be expressed as in Eq. (9), where N represents the total
number of trajectories in that quantum interaction. The terms
Cs).rolso.ap A0 Cy; 1|5, o, are the amplitudes indicating that the
system transitions to the next state |s’) with reward |r), given
current state |s) and action |a) at time step t =0 and t = 1,
respectively:

N
|¢(l)> = Z [(CS{JJOISoyao + CS,[J'1|51«“1)

n=1

% (Is0) lao) Iso) Iro} Is1) lar) Is}) I )] (9)

For the T time steps of interaction, each quantum state
can be represented as a string of qubits encoding the possible
transitions from r =0 to T — 1, formed by concatenating
state-action-next state-reward sequences. This is obtained by
applying a sequence of individual interactions. The complete
quantum distribution of the agent-environment interaction at
time step 7' can be summarized as Eq. (10):

N T-1 T-1 n
6T =D "1 Y cqmtsa [ [ 10 @) 1) 17) | . (10)
n=l1 t=0 t=0

The entire quantum state after 7 time steps is a quantum
superposition over all possible trajectories N, where each
trajectory consists of state, action, next state, and reward se-
quences from t = 0 to T — 1. The amplitudes ZTT;OI Cst rilsi.ay
define the likelihood of each trajectory based on the agent’s
actions and environment’s responses up to time step 7.

1. Return calculation by quantum arithmetic

In classical reinforcement learning (RL), the reward is a
key signal used to guide the agent’s behavior. It is a scalar
value that the agent receives from the environment as feedback
for taking an action in each state. The goal of the agent
is to maximize the cumulative reward over time. This total
accumulated reward the agent receives over a trajectory of in-
teractions is called a return. This return is typically discounted
by a factor y € [0, 1], which prioritizes immediate rewards
over future rewards.

In our work, this classical concept is mapped into the
quantum domain, where the return is encoded as a quan-
tum state |g) in a Hilbert space G. This space represents a
quantum system with a sufficient number of qubits to en-
code every potential return value. Initially, the quantum state
|g) is prepared in its ground state |0,). To compute return,
the quantum operation Ug is applied to the reward qubits
|r,) for each time step. This operation executes a quantum
addition that performs sequential bitwise addition of each
reward register |r;) and stores the result in the return registers
|g). This operation propagates carry bits through the circuit,
similar to a classical addition. For each reward register |r,),
a series of CNOT and Toffoli gates are applied to implement
bitwise addition into the return registers. Conceptually, this
operation accumulates the discounted sum of rewards across
T time steps. An abstract representation of this transformation
is givenin Eq. (11), where y € [0, 1] is a fixed discount factor,
T is the total number of time steps, and |r;) represents the
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reward at time step 7:

T-1
Ug =) vIg) (nl. (1)
t=0

This equation follows the standard form of discounted return
in classical RL, but here, the rewards |r;) are encoded in
quantum registers as qubits and the sum of discounted rewards
is then calculated using quantum arithmetic. This summation
result for each trajectory is encapsulated in the quantum reg-
ister |g).

When applying the return operation Ug to the quantum
Markov decision process (QMDP) over T time steps, the
goal is to compute the return for each possible trajectory by
summing the discounted rewards across those time steps. The
final quantum state over these interactions can be expressed as
Eq. (12):

N T—1 T—1 n
6" =" { [ch;,r,m,a, [T1s) 1a) 1s)) |rt>} ® g } :
n=1 t=0 t=0

(12)
where N is the total number of possible quantum trajecto-
ries for the agent-environment interactions over 7' time steps,
|g) represents the return for each trajectory, which sums the
discounted rewards over the T time steps. Therefore, the
complete quantum state |¢")) contains not only the state,
action, next state, and reward sequences but also the return
for each trajectory. This enables the QMDP to evaluate the
performance of all possible sequences of interactions effi-
ciently by computing the return across multiple trajectories
simultaneously.

The quantum state |¢7)), discussed in Eq. (12), is not
human-interpretable classical information. The coefficients
Csl.rls.a, that define the amplitude of the quantum state cannot
be accessed directly due to the nature of quantum systems.
The only way to obtain the information from the quantum
state |¢7)) is by measurement. Measurement is a probabilistic
process that results a specific quantum state with a likelihood
determined by |cy |5, 4, |*- Therefore, the quantum state [¢)
can be regarded as quantum encoding of probability distribu-
tions over the possible trajectories of the agent-environment
interactions across 7' time steps.

C. Quantum trajectories search

In the context of classical RL, the primary objective is to
find the optimal policy that dictates the best action in each
state to maximize the long-term return. Classical methods
for finding optimal policies include dynamic programming
techniques such as value iteration and policy iteration, and
model-free methods like Q-learning and SARSA [1].

In quantum reinforcement learning (QRL), we apply the
power of quantum algorithms to efficiently search for desired
trajectories and identify the best action for each state. We
utilize Grover’s search [12] to identify optimal quantum tra-
jectories from a set of agent-environment interactions over
multiple time steps. Each trajectory consists of the agent’s
action, the resulting quantum state of the environment, and
a return. The algorithm seeks to find optimal quantum trajec-
tories, which can inform the optimal policies for a quantum
reinforcement learning (QRL) agent.

We formulated the interaction between a quantum agent
and its environment over 7 time steps [Eq. (12)]. A
quantum trajectory here refers to the series of states and
actions the agent takes, together with the environment’s re-
sponses. Each trajectory |T') can be represented as |T) = |sy,
ao, Sy, 10, S1, A1, 15 1, -« ST—1, d7—1, Sp_y, FT—1, §) Where s
is the current state at each time step fromt =0to 7 — 1, a is
the action taken by the agent, s’ is the next state reached after
taking an action at state s, r is the reward received, and g is the
total return throughout the trajectory.

Our goal is to find the optimal trajectory from this data
set, which maximizes the return |g). To efficiently identify
the optimal quantum trajectory, we implement Grover’s search
algorithm [12]. First, we define an oracle whose primary pur-
pose is to identify and mark the desired solutions within this
search data set. In our case, this involves marking quantum
trajectories that are likely to receive maximum return. The
oracle can be represented as a unitary operator U,,, which
flips the phase of the desired trajectory. Mathematically, this
operation can be described as in Eq. (13), where |T') represents
a quantum trajectory and |y) is the target quantum state:

_ |- Ty =1y),
UnIT) = {|T) otherwise. (13)

Once the oracle has marked the desired trajectories, the
next step involves amplifying the amplitude of these marked
states. This step is done by quantum amplitude amplification
[45] which increases the probability of measuring the desired
solutions. The process of amplification U; can be expressed as
Eq. (14) [46]:

Us=2|1/fs) (1//3‘|_I, (14)

where |Y,) represents the superposition of overall quantum
trajectories, and / is the identity operator. Applying Grover’s
algorithm, which involves repeating the oracle U,, and am-
plification U, operations, the probability of measuring the
desired trajectory is maximized after a certain number of
iterations.

V. DEMONSTRATIONS AND RESULTS

In the demonstrations and results section of this work, we
first present the dynamics of the classical Markov decision
process (MDP) through a graphical representation of state
transitions and associated probabilities, as shown in Fig. 3.
The diagram includes four states labeled sg, sy, s», and s3,
where s3 represents the terminal state, and two actions a, and
a;. The arrows connecting the states indicate the transitions
between these states for a given action. Each transition is
labeled with a probability value that denotes the likelihood
of moving from one state to another under a specific action.
These probabilities provide insights into the stochastic nature
of the state transitions. For example, transitioning from s to s
with action ag has a probability of 0.6. Similarly, transitioning
from sq to s, under action ag occurs with a probability of 0.4.
The diagram also illustrates several self-transitions, such as
the one in state s3, where action a; leads to a transition back
to s3 with a probability of 1. These self-transitions capture
situations where the system remains in the same state regard-
less of the action taken. The figure visualizes the probabilistic
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p(s3ls3,ag) = 0.4
p(sals3,ap) = 0.6

p(s1lsp.ap) = 0.6

a; P(s1lsp,a1)=0.9

p(solsg.a1) =0.1 rg

p(sols1,a0) = 0.2
p(s1ls1,ag) = 0.8

FIG. 3. Graphical representation of a classical MDP with four
states (so, 1, $2, §3), tWo actions (ag, a; ), and rewards (rg, ry, 12, 3).
The arrows between states indicate the transitions associated with
each action. Transition probabilities are labeled on each arrow.

behavior of the system under different actions, as well as how
the state evolves over time based on these actions.

This classical MDP serves as a reference framework, lay-
ing the groundwork for comparing it to the quantum version in
our proposed QMDP model. The quantum model introduces
superposition effects, enhancing the decision-making process
with additional computational capabilities. Specifically, the
superposition principle allows the quantum model to represent
and process all possible state-action combinations in parallel.
This enables the agent to explore multiple trajectories simul-
taneously, significantly reducing the number of interactions
required to learn optimal policies. The quantum implementa-
tion further benefits from Grover’s search algorithm, which
provides a speedup for identifying optimal trajectories based
on cumulative returns. These computational advantages go
beyond classical capabilities by allowing efficient encoding,
evaluation, and discovery of optimal sequences within the
quantum domain.

A. Demonstration of quantum implementation of MDP

After analyzing the classical MDP dynamic, the next step is
implementing it into a quantum circuit by encoding the com-
ponents of the MDP into qubits, allowing for a superposition
quantum effect.

1. Agent and environment on quantum computer

Figure 4 illustrates the quantum Markov decision process
(QMDP), where the agent’s actions and the environment’s
responses are represented by quantum states. The circuit
begins by preparing the superpositions of states and actions on
quantum registers, representing the starting conditions of the
agent-environment interaction. Rotation gates R, () represent
the state transition probabilities, analogous to how proba-
bilities govern transitions in the classical MDP. These gates
parametrize the probability of transitioning between states,
but in the quantum domain, they introduce quantum ampli-
tudes instead of classical probabilities, allowing the agent
to explore multiple potential states at once, due to quantum
superposition. The controlled R, (6) rotations apply state tran-
sitions conditionally, such that only specific state-action pairs
(encoded in the control qubits) activate the rotation on the
next state registers. Mathematically, the rotation angle 6 is
determined by the transition probability P(s'|s, @), encoding it
into the quantum amplitudes of the next state registers. CNOT
gates model the reward mechanism. Specifically, the CNOT
gates connect the next state registers to the reward qubits,
ensuring that the reward is applied conditionally, depending
on the resulting state.

By implementing the classical MDP in the quantum do-
main, the quantum model allows the agent to explore and
evaluate multiple state-action pairs, as well as their poten-
tial next states and rewards, simultaneously. By leveraging
quantum superposition, this exploration enables the agent to
capture the complex dynamics of the environment, including
its stochastic transitions and multiple possible outcomes in
parallel, which would otherwise require repeated sampling in
classical settings. As a result, the quantum model reduces the
number of required interactions, leading to improved sample
efficiency and potentially enhancing computational perfor-
mance. Therefore, these transformations enhance the agent’s
ability to explore the state space more effectively than classi-
cal methods.

2. Agent and environment single interaction
on quantum computer

To verify the accuracy of the QMDP circuit, we simulate a
single interaction between the agent and the environment on
a quantum computer. Using both a state transition heat map
and a quantum sample distribution plot, we demonstrate that
the QMDP circuit correctly mirrors the state transitions and
rewards of the classical MDP, mentioned in Fig. 3.

gState |0) {H]

gState |0) {H]
gAction |0) {H]

TRy (6,)]

ex ate Ry(6,) Ry(6.) Ry(66) Ry(6s) Ry(610) Ry(615) Ry(616) Ry(61s)
qN tState |0 (01)} [Ry(610) } Ry (613) } [ 1 [ 1
ex ate Ry(0) — Ry(05) Ry(05 Ry(07) Ry(0s) Ry(011) [ Ry (012 Ry(014) = Ry(015) Ry (017 Ry(010)
gNextState |0 @) HRv (@)} [Ry(@2)} [Ry(@)} [Ry(@)]} [Ry(0:0) |- Ry (012) | [Ry(0mr)] [Ry(0)]
gReward |0)
gReward |0)

FIG. 4. Quantum circuit of the quantum Markov decision process (QMDP) simulating a single interaction between the agent and the
environment. The circuit encodes states and actions into qubits, allowing the agent to explore multiple states in superposition. R,(6) gates
represent probabilistic state transitions based on the environment’s response to the agent’s actions, while CNOT gates implement the reward

mechanism, conditioned on the resulting states.
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Action and Current State

E' |000): Action 0, State 00
o__ |100): Action 1, State 00
e |001): Action 0, State 01
n— |101): Action 1, State 01
52 |010): Action 0, State 10
ZzZ— |110): Action 1, State 10

|011): Action 0, State 11
|111): Action 1, State 11

l00)

|000)
1100)
|001)
101)-
010)
110)
011)
1111)

Action ang Cu?rent_StaTe

FIG. 5. State transition heat map representing the probabilities
of transition from each state-action pair (on the x axis) to the next
state (on the y axis) within a single agent-environment interaction in
QMDP. Darker cells indicate higher transition probabilities.

Figure 5 presents the state transition heat map, which
captures the probabilities of transition from each current state-
action pair (represented along the x axis) to possible next
states (represented along the y axis) in a single quantum
interaction. The agent’s current state and action are encoded
as a three-bit binary value on the x axis, while the resulting
next states are on the y axis. The color intensity of each
cell represents the likelihood of each transition, with darker
shades indicating higher probabilities. For example, transi-
tioning from the state-action pair [100) [state so(‘00’) with
action a;(‘1’)] has a probability of leading to specific next
states, with a peak probability of 0.335 to s;(‘01’). This
heat-map confirms that the QMDP circuit preserves the state
transition probabilities of the classical MDP.
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>
=
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©
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Quantum Sample

FIG. 6. Quantum sample distribution of the QMDP circuit,
displaying the probability of measuring each quantum sample af-
ter simulating a single agent-environment interaction. The x axis
lists possible quantum samples, while the y axis indicates their
probabilities.

TABLE I. Qubit representation of quantum samples for a single
agent-environment interaction.

Quantum sample ~ Reward  Nextstate  Action Initial state
‘0000001” 00 00 0 01
‘0000010’ 00 00 0 10
‘0000100 00 00 1 00
‘1010000 10 10 0 00
‘1010010 10 10 0 10
‘1010011° 10 10 0 11
‘1010101° 10 10 1 01
‘0101000’ 01 01 0 00
‘0101001 01 01 0 01
‘0101100 01 01 1 00
‘0101110° 01 01 1 10
‘1111011° 11 11 0 11
‘rrror 11 11 1 01
‘1111110 11 11 1 10
1111y 11 11 1 11

Figure 6 illustrates the quantum sample distribution of
the QMDP circuit, displaying the probability of observing
each possible quantum sample after a single execution of the
circuit. Each quantum sample in binary notation (x axis) repre-
sents a combination of the agent’s initial state, chosen action,
resulting next state, and reward sequence encoded in different
qubits. Table I presents the qubit representations of each quan-
tum sample. Starting from the least significant bits, the first
two qubits represent the initial (current) state, followed by the
action qubit, then the next two qubits indicate the next state,
and, finally, the two most significant bits represent the reward.
The y axis indicates the probability of each quantum sample.
Peaks in this distribution, quantum samples [1111111) and
|0101100) with probabilities 0.354 and 0.335, respectively,
highlight high-probability sequences of this interaction. These
results validate the QMDP circuit’s accurate representation of
both state transition probabilities and reward during a single
interaction.

Together, these figures validate that the QMDP circuit
in Fig. 4 accurately reproduces the transition probabilities
of the classical MDP, in Fig. 3, within a quantum frame-
work. The state transition heat map (Fig. 5) shows that the
quantum circuit’s state transition aligns with classical state
transition probabilities, while the quantum sample distribution
(Fig. 6) confirms that high-probability sequences are promi-
nently represented in the quantum outcomes. This consistency
demonstrates that the QMDP circuit can accurately simulate
the agent-environment interaction, capturing the dynamics of
the classical MDP while leveraging quantum superposition.

B. Demonstration of agent-environment quantum interactions
over multiple time steps

In this section, we extend the QMDP model to simulate
multiple agent-environment interactions over three consec-
utive time steps, focusing on how the state evolves based
on repeated interactions of the agent and the environment.
Figure 7 illustrates the QMDP circuit for this three-time
step process, where each time step (labeled ¢0, 1, and 2)
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t0_qgState |0)——

t0_qgState |0)

t0_gAction |0) -

t0_qgNextState |0)

t0_gNextState |0) - ..

t0_gReward |0) ‘— ‘

t0_qgReward |0) ‘
t1_gState |0)
t1_gState |0)

t1_gAction |0) -

t1_qgNextState [0)——

t1_gNextState |0) ——

t1_gReward |0)—

t1_gReward |0)—

t2_qgState |0)

t2_qState |0)
t2_gAction |0)
t2_gNextState |0)

t2_qgNextState |0)

t2_gReward |0)

t2_qgReward |0)

FIG. 7. Quantum circuit implementation of agent-environment interactions across three time steps (t = 0, 1, 2). Each colored block
represents a single time step, with qubits for states (qState), actions (qAction), next states (qNextState), and rewards (QReward). CNOT gates

represent state transitions between the interactions.

represents a unique interaction between the agent and the
environment. To model the state transitions between time
steps, CNOT gates are employed at each step. These gates
update the state qubits of the following time step condition-
ally, depending on the evolution of the new state in response
to the prior interaction of the agent with the environment.
This configuration allows the QMDP circuit to evaluate not
just individual state transitions, but also the cumulative effect
of the agent’s interactions over three time steps, effectively
capturing the rewards across multiple agent and environment
interactions.

After the agent-environment interaction across three time
steps, the next step is to calculate the return, which represents
the cumulative reward the agent accumulates over these time
steps. In classical RL, the return is typically the discounted
sum of rewards from each time step, weighted by a discount
factor. However, in this quantum implementation, for simplic-
ity, we set the discount factor to 1, meaning each reward are
equally treated, allowing for a direct accumulation of rewards
across these time steps. This simplification allows us to focus
on the mechanics of quantum return calculation, as demon-
strated in Fig. 8.

In the return circuit of Fig. 8, qubits corresponding
rewards from each time step (denoted as t0_gRewardO,
t0_gReward1, t1_qReward0, tl_qRewardl, and
t2_gReward0, t2_gRewardl) are processed into quantum
registers which are labeled as qReturn0, qReturnl, qReturn2,
and qReturn3, that store the cumulative return. At each time

t0__gRewardO |0)

step, the rewards are conditionally added to the return qubits,
ensuring a straightforward accumulation of rewards across
time steps. The cNoT, Toffoli, and multiple-controlled-x
gates link the reward qubits from each time step to the
return registers, which sum the rewards obtained across these
interactions. The use of quantum arithmetic to compute the
return enables the quantum model to reflect the cumulative
benefits experienced by the agent, just as in the classical RL.

Now, we present the classical measurement outcomes ob-
tained from simulating the agent-environment interactions
over three time steps. The classical measurement phase pro-
vides insight into the specific quantum trajectories generated
by the QMDP circuit, reflecting the different paths the agent
took based on its actions and the corresponding state tran-
sitions. In this demonstration, we used IBM QISKIT’s Aer
simulator to perform this measurement (see Appendix C
for detailed specifications). Figure 9 shows the quantum
trajectory distribution over three time steps. Table IV (see
Appendix A) presents the list of quantum trajectories along
with their corresponding trajectory numbers. Each quantum
trajectory is represented as a binary string, which corre-
sponds to the sequences of state-action-next state-reward and
the return which are observed during the simulation of the
interactions over three time steps. The y axis displays the
total count of occurrences for each trajectory. Trajectories
that occur more frequently are represented by higher bars,
showing which paths the agent most followed during these
interactions.

t0__gRewardl |0)
t1l__gRewardO |0)

t1l__gRewardl |0)
t2__gRewardO |0)

t2__ qReward1 |0)
gReturn0 |0)

©—9

qReturnl |0)

qReturn2 |0)

gReturn3 |0)

FIG. 8. Quantum circuit for return calculation in the QMDP. The process simulates the overall outcome of the agent-environment
interactions by summing rewards from all time steps into the return value by means of a quantum arithmetic.
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Quantum Trajectory

FIG. 9. Distribution of quantum trajectories in the QMDP for three time steps. The x axis shows trajectory numbers (see Table IV in
Appendix A for the corresponding quantum trajectories) and the y axis shows the total count of occurrences for each trajectory. Higher bars
indicate more frequent trajectories, providing insight into the agent-environment interaction outcomes over multiple time steps.

The distribution reveals that some trajectories appear sig-
nificantly more often than others, which demonstrates that the
agent-environment interaction can result in different outcomes
based on the stochastic nature of the environment and the
agent’s chosen action. The diversity of these trajectories high-
lights the range of possible decision paths the agent can take
over multiple time steps in the quantum model. This distribu-
tion allows us to assess the behavior of the QMDP system and
identify the most probable trajectories that emerged during
this simulation.

C. Demonstration of quantum trajectories search

In this section, we present the results of implementing
Grover’s search algorithm to identify optimal quantum tra-
jectories within the quantum reinforcement learning (QRL)
framework outlined in the Method section. The objective
of this demonstration is to efficiently search through the
set of possible quantum trajectories generated from agent-
environment interactions to find those that maximize the
overall return, thereby guiding the discovery of optimal poli-
cies for the QRL agent. Each trajectory is composed of a
sequence of states, actions, next states, rewards, and a return
value, and Grover’s search algorithm is employed to effi-
ciently identify those trajectories with the highest return from
a large set of possible agent-environment interactions.

To evaluate the effectiveness of Grover’s search in identify-
ing high-return trajectories, we analyze two specific scenarios.
In the first scenario, the agent begins from a fixed initial state
so and seeks to terminate at state s3, while maximizing the
total return over three time steps. This case represents a sce-
nario where the agent’s initial conditions are predetermined,
allowing us to evaluate the performance of Grover’s search
algorithm to find high-return trajectories under fixed initial
conditions. In the second scenario, we consider the initial
condition by allowing the agent to start from any state with the
same probability within the state space and again terminate at
state s3, aiming to maximize the return. This scenario offers
a broader search space, enabling us to assess the flexibility
and efficiency of Grover’s search in handling less restrictive
conditions where the agent’s starting state can vary.

The following provides a detailed analysis of the results for
first scenario, illustrating the performance of Grover’s search

algorithm in identifying the optimal quantum trajectories that
yield the maximum return. These results reveal the potential
of quantum algorithms to enhance trajectory search processes
in reinforcement learning tasks. This demonstration not only
illustrates the application of Grover’s search algorithm but
also highlights the significant advantages gained from imple-
menting a classical Markov decision process (MDP) into the
quantum domain. By manipulating the quantum version of
MDP, we can efficiently search through possible trajectories
and state-action pairs using Grover’s search in only one call
to the oracle. This quantum-enhanced framework provides a
substantial computational advantage over classical methods,
which would typically require more computational resources
to explore the same search space.

In the first case, we examine the scenario where the agent
starts from a fixed initial state sy and terminates at state s3,
aiming to achieve the maximum return over three time steps.
The result of this demonstration is visualized in Fig. 10, which
shows the distribution of quantum trajectories identified by
Grover’s search algorithm, as well as their respective counts
based on how frequently each trajectory was sampled. The
numbers along the x axis represent distinct quantum trajec-
tory numbers, each representing a unique sequence of states,
actions, next states, rewards, and return over three time steps
(see Table IV in Appendix A for the corresponding quantum
trajectories). The bar illustrates the total count of each trajec-
tory sampled during the measurement process after executing
Grover’s search.

Based on the classical measurement of trajectory distri-
bution for the QMDP over 3 time steps which is illustrated
in Fig. 9, there are a total of 11 possible trajectories where
the agent starts at sy and successfully terminates at s3, as
detailed in Table II. Among these, two trajectories achieve the
maximum return (‘1000”). In Table II, each quantum sample
for a given time step is represented by a structured sequence of
qubits. The qubit representation for each time step is detailed
in Table I.

As shown in Fig. 10, Grover’s algorithm successfully
identifies these optimal trajectories, marked in red, which
correspond to paths that achieve the highest return. The
two optimal trajectories ‘1000111111111111101010000” and
‘100011110111111110101000” represent the most favorable
paths under this condition, where the agent successfully
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TABLE II. Possible trajectories where the agent starts at sy and terminates at s5.

Quantum trajectory Return Time step t = 2 Time step 7 = 1 Time stepr = 0
‘0101111110101010010101000° 0101 1111101 0101001 0101000
‘0101111110101010010101100 0101 1111101 0101001 0101100
‘0110111111010101010101000 0110 1111110 1010101 0101000
‘0110111111010101010101100° 0110 1111110 1010101 0101100
‘0111111101111111010101000° 0111 1111011 1111101 0101000
‘0111111101111111010101100° 0111 1111011 1111101 0101100
‘0111111111010100101010000° 0111 1111110 1010010 1010000
‘O111111111111111010101100 0111 1111111 1111101 0101100
‘O111111111111111010101000° 0111 1111111 1111101 0101000
‘1000111111111111101010000° 1000 1111111 1111110 1010000
‘1000111101111111101010000° 1000 1111011 1111110 1010000

navigates from s to s3 with the highest return. The trajec-
tory ‘1000111111111111101010000” was sampled 20 times,
indicating that it is the most frequently identified optimal tra-
jectory in the quantum search process. Starting from the least
significant bit, this trajectory unfolds as follows: at the initial
time step t = 0, the agent begins at so(‘00’), takes action ag
(‘0’), and reaches s, (‘10’) with a reward r, (‘10°), represent-
ing ‘1010000’. At time step ¢t = 1, while at state s, (‘10°), the
agent takes action a; (‘1”), moving to the next state s3 (‘11°)
with reward r3 (‘11°), described as ‘1111110’. Finally, at time
step t = 2, the agent takes action a; (‘1’) again, remaining at
state s3 (‘11”) and receiving the reward r3 (‘11”) which is rep-
resented as ‘111111°. This sequence generates the maximum
return of 8 (‘1000) for the entire trajectory. The second opti-
mal trajectory ‘1000111101111111101010000” was sampled
seven times, demonstrating another high-return path for this
specified condition. According to these results, we can con-
clude that the optimal action for each state under this scenario
is as follows: for state so (‘00”), the optimal action is ag (‘0’),
and for states s, (‘10’) and s3 (‘11°), the optimal action is a;
(‘I’). Grover’s search finds these optimal solutions with only
one query to the oracle. This highlights the computational
power of quantum algorithms in reinforcement learning tasks.

To compare these quantum results with a classical RL
approach, we conducted an analysis using Q-learning on an
equivalent MDP dynamic. For this comparison, we set a dis-
count factor of 1 to allow us to evaluate the consistency and

effectiveness of the trajectories identified by Grover’s search
with those found through classical Q-learning. In an initial
step of the Q-learning process, the Q-table was set to zero
and updated through iterative runs of the Q-learning algorithm
until it converged toward the optimal policy. Table III presents
the resulting Q-table, which contains the Q-values learned for
an environment with four states (s, s, 52, $3) and two actions
(ag, ay). Each cell in the table contains the Q-value for a
state-action pair, which represents the expected cumulative
reward when taking a respective action in that given state.
For each state, the action with the highest Q-value is shown
in bold, indicating the optimal action to maximize expected
rewards. In state s¢, action ag has the highest Q-value (38.02),
making it optimal. In states s, 55, and 53, action @, is optimal,
with Q-values of 47.89, 54.28, and 59.54, respectively.

After generating the Q-table, we used the learned Q-values
to evaluate potential trajectories by running the Q-learning
algorithm over 100 trials, each consisting of three time steps.
This process resulted in four unique trajectories, each with
an associated total reward, as shown in Fig. 11. Figure 11
provides a comparison of total rewards for these four trajec-
tories, beginning at state sy and terminating at state s3. The
y axis represents the total reward, while the x axis lists the
different trajectories. Each bar represents a distinct trajectory,
labeled T1, T2, T3, and T4, with the total reward achieved by
each trajectory shown above the corresponding bar. Among
these, trajectory T1 achieves the highest total reward of 8,
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starting at sO and terminating at s3,
= 15 achieving maximum return
>
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Quantum Trajectory

FIG. 10. Distribution of quantum trajectories after executing Grover’s algorithm to search the trajectories starting at s, and terminating
at s3 in a QMDP over three time steps. Each trajectory number represents unique quantum sequences. The highest-return trajectories for this

scenario are highlighted in red. The most frequent trajectory was samp

led 20 times, indicating its optimality in this scenario.
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TABLE III. Learned Q-values for each state-action pair in a four-
state environment. Bold values indicate the optimal action for each
state based on Q-learning results.

dap a

So 38.02 30.22
51 37.70 47.89
SH 42.20 54.28
53 56.58 59.54

identifying it as the optimal path. In T1, the agent starts at s,
takes action ap to reach s, and receive r, which is represented
as “(0,0,2,2),” then takes action a; to move to s3 with r3
described as “(2,1,3,3),” and finally takes a; again to remain
in s3 representing “(3,1,3,3)”. This sequence results in the
highest total reward among all trajectories, indicating that it
is the most rewarding path available within the constraints.
Figure 12 provides a detailed visualization of the optimal
trajectory over three time steps, showing the sequence of
states, actions, and corresponding rewards. The plot shows the
agent’s movement through states across discrete time steps,
along with the actions taken and rewards obtained at each
step.

Upon comparison, the optimal trajectory obtained from
the classical Q-learning process (T1) was found to match
the result produced by Grover’s search algorithm applied to
the quantum MDP (‘1000111111111111101010000’). This
consistency between the quantum and classical methods
demonstrates that Grover’s quantum search effectively repli-
cates the optimal solution achievable by traditional Q-learning
in this context. Such alignment reinforces the potential of
quantum search algorithms in solving MDPs by efficiently
identifying optimal policies comparable to those found with
classical RL methods. The trajectory search for the second
scenario using Grover’s algorithm is presented in Appendix B.

D. Advantages of quantum RL over classical approaches

A core benefit of our work lies in its ability to execute the
entire reinforcement learning process within the quantum do-
main. The integration of quantum information formalism into

8/
6 Trajectories

g T1:1(0, 0, 2,2), (2,1, 3,3),(3, 1,3, 3)]

134, T2:[(0,0,1,1),(1,1,2,2), (2,1, 3, 3)]

g T3:[(0,0,1,1),(1,1,3,3),(3,1,3,3)]
24 T4:[(0,0,2,2),(2,1,1,1),(1,1, 3, 3)]

"1 T2 T3 T4
Trajectory

FIG. 11. Comparison of total rewards for four unique trajectories
from sy to s3 over three time steps in a classical Q-learning. Tra-
jectory T1 achieves the highest reward of 8, followed by T3 with a
reward of 7, and both T2 and T4 with rewards of 6. The legend details
the state-action sequences for each trajectory.

Action: 1,
Reward: 3
31 Trajectory
Action: 1,
Reward:-3
2 4
Q
8
wn
1 4
Action: O,
Reward: 2
O 1 T T T
0 1 2
Time Step

FIG. 12. Optimal trajectory plot for an agent transitioning from
So to s3 over three time steps in a classical Q-learning. Each action
and reward are labeled along the path, showing a total cumulative
reward of 8 for this trajectory.

reinforcement learning presents several significant advantages
over classical approaches.

By representing both the agent and environment as quan-
tum components and leveraging quantum computations, our
quantum framework enables the quantum agent to evaluate
numerous interaction sequences in a single execution, sig-
nificantly reducing the number of interactions required to
explore the environment. As a result, the quantum approach
achieves much greater sample efficiency compared to classical
methods, which typically process one interaction sequence at
a time and require many iterations to converge on an optimal
policy.

Moreover, the implementation of Grover’s search algo-
rithm enables efficient trajectory search with a single oracle
call. This quantum-enhanced approach significantly accel-
erates the identification of high-return trajectories while
avoiding the iterative evaluations required by classical meth-
ods. In our demonstration, the trajectories identified by the
quantum approach match those found by classical Q-learning
but are achieved with substantially lower computational cost.
This highlights the effectiveness of Grover’s algorithm in
delivering significant speedups in trajectory search compared
to classical reinforcement learning algorithms. By integrat-
ing quantum superposition and Grover’s search, the proposed
framework achieves both improved sample efficiency and
substantial computational advantages over classical reinforce-
ment learning.

VI. DISCUSSION

The results validate that the quantum implementation of
the Markov decision process (QMDP) not only aligns with
classical MDP dynamics but also effectively leverages quan-
tum properties to enhance performance. Our quantum model
maintains the core structure of state transitions and action
choices as observed in the classical MDP and ensures that
the decision making of QMDP remain consistent with that
of classical MDP. This validates that our quantum approach
can successfully replicate the behavior of classical MDP while
introducing potential improvements in speed and computa-
tional efficiency. Another key observation is that with only
three time steps, the quantum agent can effectively explore the
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possible trajectories and observe the optimal policies for each
state. The quantum agent’s ability for simultaneous explo-
ration of multiple trajectories, resulting in a faster and more
efficient determination of the optimal policy compared to tra-
ditional algorithms. Furthermore, the use of Grover’s search
algorithm within our quantum MDP framework demonstrates
that a single call to the oracle is sufficient to identify the
desired trajectories. Grover’s algorithm offers a speedup,
allowing the quantum agent to perform optimal trajectory
searches with substantially fewer computational steps. This
efficient solution highlights an improvement in speed and
computational resources compared to classical search algo-
rithms. These advantages highlight the potential of quantum
computing in complex search and optimization processes,
providing faster solutions with reduced computational re-
sources.

VII. CONCLUSION

In this work, we have presented a quantum implementation
of a classical Markov decision process (MDP) entirely within
the quantum framework, modeling both the agent and envi-
ronment as quantum components, as well as their interactions
are exclusively through quantum processes. Furthermore, the
trajectory search is also conducted entirely within a quan-
tum framework to reduce the computational complexity of
trajectory optimization. By demonstrating a purely quantum
approach to the agent-environment interactions and trajectory
optimization, we achieve a complete quantum realization of
reinforcement learning (QRL) without any reliance on classi-
cal computations, offering an efficient alternative to classical
reinforcement learning tasks.

This work serves as a foundational step in advancing the
field of quantum reinforcement learning (QRL). It provides a
concrete basis for future research aimed at scaling quantum-
native RL systems, exploring more complex environments,
and integrating with evolving quantum hardware platforms.
Beyond its theoretical contributions, the proposed framework
demonstrates strong potential for real-world applications. In
autonomous driving, quantum MDP enables simultaneous
evaluation of multiple driving trajectories, while Grover’s
search accelerates optimal policy discovery, leading to faster
decision making for collision avoidance and route planning.
In personalized healthcare, patient conditions and treatments
can be modeled as MDPs, and the QRL framework evalu-
ates multiple treatment plans in parallel, with Grover’s search
identifying those with the highest reward for faster selection
of effective therapies. In financial portfolio management, our
approach enables parallel exploration of investment strategies,
with Grover’s search rapidly identifying high-return paths,
offering a significant computational advantage for real-time
trading environments. These real-world scenarios illustrate
how the proposed framework provides practical applicability
and computational advantages, establishing a foundation for
future advances in quantum reinforcement learning applica-
tions.

Future research could be extended by exploring more com-
plex MDPs with larger state and action spaces, addressing
scalability challenges by optimizing qubit usage. In our cur-
rent implementation of Grover’s search, we assume prior

knowledge of the maximum return and construct the quan-
tum oracle accordingly. A promising direction for future
work is to develop quantum approaches capable of searching
for unknown optimal returns without this prior knowledge.
Additionally, since qubit usage increases significantly when
running over multiple time steps, investigating techniques for
reusing qubits could help mitigate resource demands. Explor-
ing alternative quantum search algorithms beyond Grover’s
could further enhance efficiency in various decision-making
scenarios. These advancements could expand the applicability
of quantum MDPs and drive progress in quantum reinforce-
ment learning for complex, resource-intensive tasks.
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APPENDIX A: QUANTUM TRAJECTORIES
FOR AGENT-ENVIRONMENT INTERACTIONS
OVER THREE TIME STEPS

To facilitate the analysis of quantum interactions between
the agent and the environment, we enumerate all possible
quantum trajectories that can occur over a span of three time
steps. Each trajectory is defined by a binary string that en-
codes the sequence of agent-environment interactions and the
corresponding return. Table IV presents all such trajectories,
with each representing a unique sequence of interactions and
returns.

APPENDIX B: RESULTS FOR QUANTUM
TRAJECTORIES SEARCH

In this Appendix, we examine Grover’s search for identi-
fying the optimal trajectories for broader search space where
the agent can start from any initial state within the state space
with equal probability and must terminate at state s3, aiming to
maximize the total return over three time steps. This scenario
expands the search space by introducing uncertainty in the
agent’s starting state, making the task of finding the optimal
trajectory more complex. The result of this demonstration,
visualized in Fig. 13, shows the distribution of quantum trajec-
tories identified by Grover’s search algorithm. The trajectory
numbers on the x axis represent distinct quantum trajectories,
with each number representing a unique sequences of state-
action-next state and reward over three time steps, followed
by a return value (see Table IV in Appendix A for the corre-
sponding quantum trajectories).
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TABLE V. List of quantum trajectories with their corresponding trajectory numbers. Each quantum trajectory represents a unique sequence
of interactions and the return over three time steps.

Trajectory no.

Quantum trajectory

Trajectory no.

Quantum trajectory

T-1
T-2
T-3
T-4
T-5
T-6
T-7
T-8
T-9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57

‘0001000000101010000000001°
‘0001000000101010000000100
‘0001000000101011000000001°
‘0001000000101011000000010°
‘0001000010000000010101100°
‘0001010100000001000000001°
‘0001010100000001000000010°
‘0001010110000001000000001°
‘0001010110000001000000010
‘0010000000101010010101000
‘0010000000101010010101001°
‘0010000000101010010101100
‘0010000000101010010101110°
‘0010000001010100000000010°
‘0010000010000000101010010
‘0010010100000000010101001°
‘0010010100000000010101100°
‘0010010100000000010101110°
‘0010010100101010000000001°
‘0010010100101010000000010°
‘0010010100101010000000100
‘0010010100101011000000001°
‘0010010100101011000000010°
‘0010010100101011000000100
‘0010010110000000010101000
‘0010010110000000010101001°
‘0010010110000000010101100
‘0010010110000000010101110°
‘0010101000000001000000010°
‘0011000000101011101010000
‘0011000000101011101010010°
‘0011000001010101010101000
‘0011000001010101010101001°
‘0011000001010101010101100°
‘0011000001010101010101110°
‘0011010100000000101010000
‘0011010100000000101010010°
‘0011010100000000101010011°
‘0011010100000000101010101°
‘0011010100101010010101000°
‘0011010100101010010101001°
‘0011010100101010010101100
‘0011010100101010010101110°
‘0011010110000000101010000°
‘0011010110000000101010010°
‘0011010110000000101010011°
‘0011010110000000101010101°
‘0011010111010100000000100
‘0011101000000000010101001°
‘0011101000000000010101110°
‘0011101010101010000000001°
‘0011101010101010000000010°
‘0011101010101011000000001°
‘0011101010101011000000010°
‘0100000001010100101010000
‘0100000001010100101010010°
‘0100000001010100101010011°

T-58
T-59
T-60
T-61
T-62
T-63
T-64
T-65
T-66
T-67
T-68
T-69
T-70
T-71
T-72
T-73
T-74
T-75
T-76
T-77
T-78
T-79
T-80
T-81
T-82
T-83
T-84
T-85
T-86
T-87
T-88
T-89
T-90
T-91
T-92
T-93
T-94
T-95
T-96
T-97
T-98
T-99
T-100
T-101
T-102
T-103
T-104
T-105
T-106
T-107
T-108
T-109
T-110
T-111
T-112
T-113
T-114

‘0100000001010100101010101”
‘0100010100101011101010000
‘0100010100101011101010010
‘0100010100101011101010011”
‘0100010100101011101010101”
‘0100010111010101010101000
‘0100010111010101010101001”
‘0100010111010101010101100
‘0100010111010101010101110
‘0100101000000000101010011”
‘0100101000000000101010101”
‘0100101001010100000000001”
‘0100101001010100000000010
‘0100101001010100000000100
‘0100101010101010010101000
‘0100101010101010010101001”
‘0100101010101010010101100
‘0100101010101010010101110
‘0100111110101010000000010
‘0100111110101011000000001”
‘0100111110101011000000010
‘0101000001010100111111011”
‘0101000001010100111111101”
‘0101000001010100111111110
‘0101000001010100111111111°
‘0101010111010100101010010
‘0101010111010100101010011”
‘0101010111010100101010101”
‘0101101001010101010101000
‘0101101001010101010101001”
‘0101101001010101010101100
‘0101101001010101010101110
‘0101101010101011101010010
‘0101101010101011101010011”
‘0101101010101011101010101”
‘0101111110101010010101000
‘0101111110101010010101001”
‘0101111110101010010101100
‘0101111111010100000000001”
‘0101111111010100000000010
‘0101111111010100000000100
‘0110010111010100111111011”
‘0110010111010100111111101”
‘0110010111010100111111110
‘0110010111010100111111111°
‘0110101001010100101010000
‘0110101001010100101010010
‘0110101001010100101010011”
‘0110101001010100101010101”
‘0110101001111111010101000
‘0110101001111111010101001”
‘0110101001111111010101100
‘0110111110101011101010000
‘0110111110101011101010011”
‘0110111110101011101010101”
‘0110111111010101010101000
‘0110111111010101010101001”
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TABLE IV. (Continued.)

Trajectory no. Quantum trajectory

Trajectory no. Quantum trajectory

T-115 ‘0110111111010101010101100° T-143 ‘1000111101111111101010000°
T-116 ‘0111101001010100111111011° T-144 ‘1000111101111111101010010°
T-117 ‘0111101001010100111111101° T-145 ‘1000111101111111101010011°
T-118 ‘0111101001010100111111110° T-146 ‘1000111101111111101010101°
T-119 ‘0111101001010100111111111° T-147 ‘1000111111010100111111011°
T-120 ‘0111101001111111101010000 T-148 ‘1000111111010100111111101°
T-121 ‘0111101001111111101010010° T-149 ‘1000111111010100111111110°
T-122 ‘0111101001111111101010011” T-150 ‘1000111111010100111111111°
T-123 ‘0111101001111111101010101° T-151 ‘1000111111111111101010000°
T-124 ‘0111111101111111010101000° T-152 ‘1000111111111111101010010°
T-125 ‘0111111101111111010101001” T-153 ‘1000111111111111101010011°
T-126 ‘0111111101111111010101100 T-154 ‘1000111111111111101010101°
T-127 ‘0111111111010100101010000° T-155 ‘loo1111101111110111111011°
T-128 ‘0111111111010100101010010° T-156 ‘1001111101111110111111101°
T-129 ‘0111111111010100101010011° T-157 ‘1001111101111110111111110°
T-130 ‘0111111111010100101010101° T-158 ‘loor111io1111110111111111°
T-131 ‘0111111111111111010101000° T-159 ‘roori111i1o1111111111111011°
T-132 ‘0111111111111111010101001° T-160 ‘1001111101111111111111101°
T-133 ‘0111111111111111010101100° T-161 ‘1001111101111111111111110°
T-134 ‘o111111111111111010101110° T-162 ‘rooriirioririataiananry
T-135 ‘1000101001111110111111011° T-163 ‘10011111111111101111110171°
T-136 ‘1000101001111110111111101° T-164 ‘loo1111111111110111111101°
T-137 ‘1000101001111110111111110° T-165 ‘1o001111111111110111111110°
T-138 ‘100010100111111011 111111 1° T-166 ‘1o01111111111110111111111°
T-139 ‘1oo0101001111111111111011° T-167 ‘roorirririiriiriirainionry
T-140 ‘r0o0101001111111111111101° T-168 ‘roori111i1r11r1111111111101°
T-141 ‘1000101001111111111111110° T-169 ‘1001111111111111111111110°
T-142 ‘rooo10100111111111 111111 1° T-170 ‘1001111111111 111y
Based on the classical measurement of trajectory ‘100111111111111111111110,7  “100111101111111111111

distribution in Fig. 9, there are a total of 16 trajectories, from
T-155 to T-170, that achieve the maximum return (‘1001”)
under this scenario. Grover’s search algorithm is capable of
identifying these trajectories with a single call to the oracle.
The results show that Grover’s search efficiently determines
these trajectories, and among them, the five trajectories with
the highest frequencies are ‘100111111111111111111111,

111, “100111111111111111111101,” and ‘1001111111111
11111111011°. These represent the most likely optimal
paths where the agent successfully terminates at state s3
while achieving the maximum return. Although these five
trajectories are the most frequently sampled under the given
condition, other trajectories were observed as well, though
with lower frequencies. These quantum trajectories indicate

Most likely quantum trajectories for achieving maximum return

m—— T-170 "1001111111111111111111111"
m— T-169 "1001111111111111111111110"
= T-162 "1001111101111111111111111"
= T-168 "1001111111111111111111101"

T-167 "1001111111111111111111011"

Total Count
S

35

M A A e e ek i
.............

Quantum Trajectory

FIG. 13. Distribution of quantum trajectories after executing Grover’s algorithm to search the trajectories starting from any state and
terminating at s; in the QMDP over three time steps. Each trajectory number represents unique trajectory sequences. The most likely high-
return trajectories are highlighted in red. The trajectory ‘100111111111111111111111” was sampled 35 times, making it the most frequently

identified optimal path for this scenario.
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TABLE V. Learned Q-values for state-action pairs for four states
MDP, with the optimal action for each state shown in bold. Action
a, consistently yields the highest Q-value across all states (s to s3),
indicating it as the optimal action choice in each state for maximizing
cumulative reward.

ap a

So 35.15 36.67
S1 42.66 46.87
k%) 47.34 48.73
53 48.36 49.20

that action a; (‘1) is the optimal action for all states in this
scenario.

After Grover’s search algorithm, we now compare the out-
comes using classical Q-learning under the same scenario.
The Q-table generated from the Q-learning process is pre-
sented in Table V. As shown in Table V, action a; consistently
provided the highest Q-value for all states, as indicated by the
bold values. To identify optimal trajectories, we executed the
Q-learning algorithm for 100 trials across three time steps.
This process generated nine unique trajectories with total
rewards ranging from 4 to 9, as illustrated in Fig. 14. The
bar chart illustrates the total rewards obtained for each unique
trajectory that starts from any state and terminates at s3 over
three time steps. The x axis lists each trajectory (T1 through
T9), and the y axis indicates the total reward associated with
each trajectory. The bars are labeled with their respective
reward values. Among these nine trajectories, the maximum
reward ‘9’ can be achieved by these three trajectories (T1, T2,
and T8). In T1, the system consistently returns to state s3 at
each time step, maximizing cumulative reward. T2 starts in
state s, but moves to and remains in s3 for the subsequent
time steps, while T8 makes an initial transition at state s; and
eventually leads to state s3, where it stays for the remaining
time steps to achieve the highest total reward of 9.

Trajectories
T1:0(3,1,3,3),(3,1,3,3),(3,1,3,3)]
5 T2:[(2,1,3,3),(3,1,3,3),(3, 1, 3,3)]
S T3:[(1,1,2,2),(2,1,3,3),(3, 1, 3, 3)]
5 T4:[(0,1,1,1),(1,1,2,2), (2,1, 3, 3)]
= T5:[(0,1,0,0), (0, 1,1, 1), (1, 1,3, 3)]
é T6:[(2,1,1,1),(1,1,3,3),(3, 1,3, 3)]
T7:000,1,1, 1), (1,1,3,3), (3, 1,3, 3)]
T8:[(1,1,3,3),(3,1,3,3),(3,1,3,3)]
T9:[(2,1,1,1),(1,1,2,2), (2, 1, 3, 3)]

0 T1 T2 T3 T4 T5 T6 T7 T8 T9
Trajectory

FIG. 14. Comparison of total reward for each unique trajectory
(T1-T9), starting from any state and ending at s3 over three time
steps in classical Q-learning.

Action: 1, Action: 1, Action: 1,
Reward: 3 Reward: 3 Reward: 3
31 e o *
Action: 1,
Reward:
2 4
Q
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! —e— Starting State: 3
—=— Starting State: 2
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0L— T .
0 1 2
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FIG. 15. Optimal trajectories from three different starting states
(1, 2, and 3) with each trajectory converging to the terminal state s3.
The x axis represents the time steps, while the y axis shows the state
transitions. Each colored line represents a different starting state:
purple for state 3, blue for state 2, and green for state 1.

Figure 15 provides a detailed view of these optimal tra-
jectories over three time steps, showing the agent’s path
from different starting states, and highlighting the actions
and rewards at each time step. When examining the trajec-
tories from Q-learning and Grove’s search, T1 corresponds to
the quantum trajectory ‘100111111111111111111111” which
was identified with the highest count. Similarly, T2 and T8
are also among the top trajectories identified by Grover’s
search, represented as ‘100111111111111111111110” and
‘100111111111111111111101, respectively. These results
demonstrate that Grover’s search is highly effective in iden-
tifying the most frequent quantum trajectories, even in the
broader search space with no fixed initial state.

APPENDIX C: SYSTEM AND SIMULATION
ENVIRONMENT SPECIFICATIONS

The computations in this work were conducted using the
IBM QISKIT framework to simulate quantum circuits on a
classical device. Below, we provide detailed specifications of
both the quantum simulation environment and the classical
hardware used in this study.

Quantum simulation environment specifications:

(1) Quantum framework: IBM QISKIT (version 1.1.0).

(2) Quantum simulator: IBM QISKIT Aer Simulator (ver-
sion 0.14.2).

(3) Simulation method: State-vector simulation.

(4) Simulation device: CPU-based simulation.

(5) Noise model: None (ideal simulation).

Classical device specifications:

(1) Processor: AMD Ryzen 5 PRO 5650U with Radeon
Graphics, 2.30 GHz.

(2) RAM: 16 GB.

(3) System type: 64-bit operating system, x 64-based pro-
CEessOr.
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