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INTRODUCTION

 Use Reinforcement Learning (RL) for power 

management in Energy Harvesting Sensor Nodes 

(EHSN)

 Adaptive control behavior

 Near-optimal performance

 Comparison between different RL algorithms

 Q-Learning

 SARSA
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ENERGY HARVESTING SENSOR NODE CONCEPT
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• CONSTRAINTS

• Sensor node has to be operating at 

ALL times

• Battery cannot be completely 

depleted

• Battery cannot be overcharged 

(exceed 100%)

• Battery size is finite

• Charging/discharging  rates are 

finite
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OBJECTIVE: NODE-LEVEL ENERGY NEUTRALITY
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Energy 

Harvested

Energy 

Consumed

• We want to use ALL the energy that is 

harvested. 

• One way of achieving that is by ensuring 

node level energy 

neutrality – the condition when 

the amount of energy harvested equals 

the amount of energy consumed.

• Autonomous Perpetual 

operation can be achieved



http://www.mdpi.com/sensors/sensors-12-02175/article_deploy/html/images/sensors-12-

02175f5-1024.png

DIFFERENT SENSORS

CHALLENGES
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Environmental Sensor Networks – P.I. Corke et. al.

https://sites.google.com/site/sarmavrudhula/home/research/energy-management-of-wireless-sensor-

networks

MOVING SENSORS DIFFERENT ENVIRONMENTS



SOLUTION

Preparing heuristic, user-defined contingency solutions 

for all possible scenarios is impractical.
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We want a one-size-fits-all solution

sensor nodes that are capable of:

• autonomously learning optimal 

strategies 

• adapting once they have been 

deployed in the environment.



SOLUTION
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➢ Use RL for 

adaptive control

➢ Use a solar 

energy 

harvesting 

sensor node as a 

case example



Q-Learning Results (ETNET 2017)
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𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑊𝑎𝑠𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑

𝐸𝑛𝑒𝑟𝑔𝑦 𝑊𝑎𝑠𝑡𝑒 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑
−𝑁𝑜𝑑𝑒 𝐸𝑛𝑒𝑟𝑔𝑦
− 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦



Q-Learning (ETNET 2017)
❑ Demonstrated that RL approaches outperform 
traditional methods.

❑ Limitations

•State explosion
• 200 x 5 x 6 states
•Q-table becomes too large to train using random policy

• Long training times
• Required 10 years worth of training

• Reward function did not reflect the true objective of 
energy neutrality.

9ETNET 2017 (Kumejima)



REINFORCEMENT LEARNING
IN A NUTSHELL
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REINFORCEMENT LEARNING
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Environment

REWARD, New State

ACTION: Choose Duty Cycle

What action 

should I take to 

accumulate 

total maximum 

reward?

OBSERVATIONS: Battery Level

Energy Harvested

Weather Forecast

Agent

(Power Manager)

• Type of Machine Learning based on experience rather than instruction

• Map situations (states) into actions – and receive as much reward as 

possible



REINFORCEMENT LEARNING
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• IMPORTANT CONCEPTS

▫ Q-VALUE

▫ ELIGIBILITY TRACES



Q-VALUE
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State

si

• To give a measure of the 

“goodness” of an action 

in a particular state, we 

assign each state-action 

pair a Q-value:  

Q(state, action)

• Learned from past 

(training) experiences.

• Higher Q-value → better the choice of 

action for that state.

• Q(s,a) value is the expected cumulative 

reward that you can get starting from 

state s and taking action a
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State
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a2
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𝑄(𝑠𝑖 , 𝑎1)

𝑄(𝑠𝑖 , 𝑎2)

𝑄(𝑠𝑖 , 𝑎3)



Q-VALUE

25-Mar-20 14

• To give a measure of the 

“goodness” of an action 

in a particular state, we 

assign each state-action 

pair a Q-value:  

Q(state, action)

• Learned from past 

(training) experiences.

• Higher Q-value → better the choice of 

action for that state.

• Q(s,a) value is the expected cumulative 

reward that you can get starting from 

state s and taking action a

State

si

State

sj

State

sk

State

sl

r2

a2
𝑄(𝑠𝑖 , 𝑎2)



LEARNING Q-VALUES
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TO FIND 𝑸 𝒔𝒌, 𝒂𝒌

• Start with arbitrary guesses for 𝑄 𝑠𝑘 , 𝑎𝑘
• Update 𝑄 𝑠𝑘 , 𝑎𝑘 incrementally towards the target value (Bootstrapping)

• General Update Rule

𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒[𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒]
𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 1 − 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 × 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 × 𝑇𝑎𝑟𝑔𝑒𝑡

𝑄 𝑠𝑘 , 𝑎𝑘 ← 1 − 𝛼 𝑄 𝑠𝑘 , 𝑎𝑘 + 𝛼 × 𝑇𝑎𝑟𝑔𝑒𝑡

?



SARSA  VS Q-LEARNING
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• Agent starts at state sk and takes some action ak according to policy .

• Receives a reward rk and is transported to new state sk+1.

SARSA

• The agent considers taking the 

next action ak+1.

• The Q-value Q(sk,ak) is then 

updated.

Q-LEARNING

• The agent assumes the next action will 

be the action with the highest Q-value.

• The Q-value Q(sk,ak) is then updated.

• -greedy policy is used i.e. random actions are taken with probability  to allow 

exploration.

𝑄 𝑠𝑘 , 𝑎𝑘 ← 1 − 𝛼 𝑄 𝑠𝑘 , 𝑎𝑘 +
α[𝑟𝑘 + 𝛾max

𝑎
𝑄(𝑠𝑘+1, 𝑎)]

𝑄𝜋 𝑠𝑘 , 𝑎𝑘 ← 1 − 𝛼 𝑄𝜋 𝑠𝑘 , 𝑎𝑘 +
α[𝑟𝑘 + 𝛾𝑄𝜋 𝑠𝑘+1, 𝑎𝑘+1 ]



𝑄𝜋 𝑠𝑘, 𝑎𝑘 ← 1 − 𝛼 𝑄𝜋 𝑠𝑘, 𝑎𝑘 + α[𝑟𝑘 + 𝛾𝑄𝜋 𝑠𝑘+1, 𝑎𝑘+1 ]

SARSA VS Q-LEARNING

SARSA

𝑄 𝑠𝑘, 𝑎𝑘 ← 1 − 𝛼 𝑄 𝑠𝑘, 𝑎𝑘 + α[𝑟𝑘 + 𝛾max
𝑎

𝑄(𝑠𝑘+1, 𝑎)]Q-Learning
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𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 1 − 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 × 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 × 𝑇𝑎𝑟𝑔𝑒𝑡



SARSA VS Q-LEARNING

SARSA

 On-policy learning: 

 updates the policy it is using during 

training

 Update is carried out by considering

the next action to be taken

 Faster convergence but requires an 

initial policy.

 Easier to integrate with function 

approximation

Q-Learning

 Off-policy learning: 

 final learned policy is the same 

regardless of training methods

 Assumes the best actions will always 

be taken

 Takes longer to converge

 Difficult to integrate with linear 

function approximation
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SARSA Q-Learning

Choosing Next 

Action

-greedy policy -greedy policy

Updating Q -greedy policy Greedy policy



ELIGIBILITY TRACES
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State 1 State 2 State 24 REWARD…Action 1 Action 2 Action 24

Update Q(State 24, Action 24)

Update Q(State 2, Action 2)

Update Q(State 1, Action 1)

• In our model, one action is taken every hour. The reward is awarded at the end of 24 

hours. A single action cannot justify the reward at the end.  A series of 24 state-action 

pairs are responsible for the reward.

• To update the Q-values of the appropriate state-action pairs, we introduce a memory 

variable, 𝑒(𝑠, 𝑎), called the eligibility trace.

• 𝑒 𝑠, 𝑎 for ALL state-action pairs decays by 𝜆 at every time step.

• If the state-action pair 𝑠𝑘 , 𝑎𝑘 is visited, 𝑒 𝑠𝑘 , 𝑎𝑘 is incremented by one.



SARSA() AND Q-LEARNING ()
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• SARSA() – integrate eligibility traces with SARSA algorithm

• Q() – integrate eligibility traces with Q-Learning algorithm

• , 0 < 𝜆 < 1, is the strength with which Q-values of early 

contributing state-action pairs are updated as a consequence 

of the final reward.



ADAPTIVE POWER CONTROL USING 

REINFORCEMENT  LEARNING ALGORITHMS
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• SARSA() – SARSA with eligibility traces

• SARSA

• Q() – Q-Learning with eligibility traces

• Q-Learning



STATE DEFINITION
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Distance from 

energy neutrality, 

𝑆𝑑𝑖𝑠𝑡(𝑡𝑘)

Battery, 

𝑆𝑏𝑎𝑡𝑡(𝑡𝑘)
Harvested Energy, 

𝑆𝑒ℎ𝑎𝑟𝑣𝑒𝑠𝑡(𝑡𝑘)
Weather Forecast, 

𝑆𝑑𝑎𝑦(𝑡𝑘)

- 20000 mWh Low (< 20%) 0 mWh Very little sun

- 19000 mWh Mid (20% to 80%) 0 to 100 mWh Overcast

⋮ High (> 80%) 100 mWh to 500 mWh Partly Cloudy

0 mWh 500 mWh to 1000 mWh Fair

⋮ 1000 mWh to 1500 mWh Sunny

19000 mWh 1500 mWh to 2000 mWh Very Sunny

20000 mWh > 2000 mWh

State at 𝑡𝑘 = 𝑆𝑑𝑖𝑠𝑡 𝑘 , 𝑆𝑏𝑎𝑡𝑡 𝑡𝑘 , 𝑆𝑒ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑡𝑘 , 𝑆𝑑𝑎𝑦 𝑡𝑘



ACTION SPACE
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• Choose duty cycle of the sensor node

𝐴 = 𝑎 𝑡𝑘 ∈ 1,2,3,4,5

ACTION

𝑎 𝑡𝑘

DUTY CYCLE 

(%)

ENERGY 

CONSUMED PER 

HOUR (mWh)

1 20 100

2 40 200

3 60 300

4 80 400

5 100 500



REWARD FUNCTION
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• Awarded at the end of an episode (day).

• Each episode consists of 24 one-hour epochs.

• We want the net energy difference between 

initial and final battery levels to be zero.

• Use a reward scheme that depends on Energy 

Neutral Performance (ENP) at the end of the 

episode (𝑡𝑘 = 𝑇).

• Energy Neutral Performance can be defined here 

as

▫ |𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 – 𝐹𝑖𝑛𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙|



TRAINING AND TESTING
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• Training: 

Tokyo, Year 2010

• Testing: 

Tokyo, Year 2010/2011

Wakkanai, Year 2010/2011

• Wakkanai has a much colder climate than that of 

Tokyo and received much lesser solar radiation.

• We observe the adaptive behavior of our solution 

when the location of implementation is different 

from the location of its training



RESULTS
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SARSA VS Q-LEARNING
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ENERGY NEUTRAL OPERATION
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• SARSA(λ)compared with 

Optimal Policy

• Optimal Policy

▫ Theoretical upper limit

▫ Calculated using future 

information and linear 

programming techniques

Battery profiles for SARSA and 

Offline Policy are very similar



SARSA VS Q-LEARNING
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• Every day the 

battery is reset to 

initial battery level

• ENP (as a percentage 

of maximum battery 

capacity, BMAX) is 

observed at the end 

of each day of the 

year.

𝐸𝑁𝑃 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑎𝑡 00: 00 − 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑎𝑡 23: 59
𝐸𝑁𝑃 = |60% 𝑜𝑓 𝐵𝑀𝐴𝑋 − 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑎𝑡 23: 59|



SARSA VS Q-LEARNING
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OBSERVATIONS
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• SARSA(λ) – BEST PERFORMANCE.
• Q(λ) – WORST PERFOMANCE.

• The “high” learning rate causes Q-values to oscillate with large 
amplitudes and the policy cannot converge.

• A lower learning rate shows better performance but at expense of longer 
learning times.

• SARSA methods have a generally robust performance as compared to Q-
Learning.

• Using eligibility traces with SARSA enhances the performance.



SUMMARY

 Adaptive Control is achieved by using SARSA RL methods .

 Results from SARSA RL are near optimal.

 SARSA() outperforms Q-Learning methods.
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THANK YOU FOR LISTENING
ANY COMMENTS OR QUESTIONS ARE WELCOME
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For further details about our work using SARSA(λ), please refer to our paper to be 

presented in EMSOFT 2017 and published in ACM TECS Journal.

Adaptive Power Management in Solar Energy Harvesting Node using 

Reinforcement Learning

shaswot@hal.ipc.i.u-tokyo.ac.jp
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