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Deep Neural Networks

SHASWOT SHRESTHAMALI''®  Yuan HE!  Masaakt Konpo!2

Abstract: The idea of using inexact computation for overprovisioned DNNs (Deep Neural Networks) to extract power
savings and performance gains at the cost of minor performance degradation has become very popular. However, there
is still no general method to schedule the DNN computations on a given hardware platform to effectively implement
this idea without loss in computational efficiency. Most contemporary methods require extensive retraining, specialized
hardware and hardware-specific scheduling schemes. We present HAS: Hardware Agnostic Scheduler for scheduling
DNN computations in heterogeneous and faulty hardware. Given a trained DNN model and a hardware fault profile,
our scheduler is able to recover significant performance even at high fault rates. HAS schedules the computations such
that the low priority ones are allocated to inexact hardware. Since most DNN computations are matrix multiplications,
it achieves this by shuffling (exchanging) the rows of the matrices. The best shuffling order for a given DNN model
and hardware faulty profile is determined using Genetic Algorithms (GA). We simulate bitwise errors on different
model architectures and datasets with different types of fault profiles and observe that HAS can recover up to 30% of

Fault-aware Hardware Scheduling of Computations in

classification accuracy even at high fault rates (which correspond to approximately 50% power savings).
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1. Introduction

Deep Neural Networks (DNNs) have become very successful
for a wide range of applications in research and industry. There
is a large body of research focusing on accelerating DNNs with
specialized hardware (such as GPUs and TPUs) to overcome the
resource constraints (e.g., power, computation) of real world ap-
plications. Since the majority of computations for DNNs are em-
barrassingly parallel, the current trend has been to develop ac-
celerators with a large number of Processing Elements (PEs) that
operate in SIMD mode. For e.g., NVIDIA GPUs contain CUDA
cores/threads that operate in parallel and which are arranged in
Streaming Multiprocessor (SM) blocks.

Many of the new DNN accelerators have very densely packed
chips/chiplets in various novel architectural organizations (e.g.,
Google’s Tensor Processing Units (TPUs), SambaNova’s Datas-
cale Systems, Cerebras’s Wafer-Scale Engine (WSE), Tesla’s
Dojo DI etc.). However, with current nanometer process tech-
nologies, yield and reliability are drastically reduced. Disposing
entire chips due to the presence of a few faulty PEs is impractical.
Adding error correction mechanisms and redundancies to main-
tain worst-case margins further drives up the power and cost. In
addition, chips also degrade with time and external factors caus-
ing some PEs to be more faulty than others. Therefore we cannot
assume accelerators to be perfectly reliable all the time.

Motivation: Although the reliability of accelerators is a ma-
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Fig. 1 DNN models deployed in the field are implemented in different hard-
ware configurations that tradeoff efficiency for inexact computation.
HAS schedules the DNN computations using a black-box approach
to recover performance in compromised hardware.

jor issue, DNNs have inherent algorithmic resilience to errors on
account of their distributed parallel nature and over-provisioned
parameters. They have been shown to be fault tolerant to Bit Er-
ror Rates (BERs) as high as 107 (in contrast to conventional sys-
tems that require BERs in the order of 10713) [4})5]]. It is therefore
possible to salvage performance of DNNs even with faulty hard-
ware. In fact, the approximate computing and machine learning
(ML) research community have cleverly leveraged this resiliency
of DNNs. By relaxing computational exactness, they have been
able to increase energy efficiency and reduce computational la-
tency at the cost of minor performance degradation. Some pop-
ular methods are i) to reduce the supply voltage in SRAM cells
to maximize energy efficiency [1,5] and ii) use low-power ap-
proximate arithmetic hardware [1,/11]. Reducing computation
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precision for lower latency, memory usage and energy consump-
tion [7,/9,/11]] has also gained major attention. In fact, it has be-
come very common for DNN accelerators to have a mixture of
heterogeneous PEs with different precision [8].

The general method is to first identify unimportant neurons
and then schedule them on compromised hardware. While
studying the sensitivity of neurons to computational errors is in-
teresting in its own right, it does not help very much when im-
plementing DNNs on accelerators. This is because optimized
code breaks the conceptual one-to-one mapping between a neu-
ron and its computations. For e.g., in the case of GPUs, the com-
putations corresponding to any one neuron is actually spread out
across multiple CUDA threads to maximize throughput. This is
achieved by block-tiling methods used widely in GEMM (Gen-
eral Matrix Multiply) libraries. As a result, many CUDA cores
participate in the calculation of one neuron and CUDA cores are
reused extensively by different neurons. The scheduling therefore
must focus on allocating unimportant computations (not neurons)
on compromised hardware. In this light, scheduling faulty hard-
ware to DNN computation becomes very difficult (due to the re-
sulting large combinatorial optimization search space). Existing
solutions are not general because they make strong assumptions
about the DNN model and hardware [7].

Proposal: Given the variety of DNN models, accelerators and
types of fault profiles that may manifest in hardware, it is impor-
tant to have a hardware-agnostic method for scheduling computa-
tions on faulty hardware. We propose HAS: Hardware Agnostic
Scheduler to schedule DNN computation in faulty hardware to
reduce the effect of faults and recover model performance. HAS
achieves this by shuffling the rows of the matrices during multi-
plication. This gives it some control over where the computations
are allocated in the hardware. HAS uses Genetic Algorithm (GA)
to search the huge optimization space for the best shuffling order
such that the majority of the critical operations are assigned to
robust computation units. Row-shuffling, while simple, is a gen-
eral methodology for performance recovery that treats the DNN
model as a black box. It does not alter the semantics so code
redesign in not necessary. Neither does it interfere with the opti-
mized dataflow graphs specific to different microarchitectures. It
also has extremely low computational and time complexity and
can be applied to a vast variety of DNNs.

In this paper, we focus only on inference. Learning the weights
of a DNN model is a one-time cost that is performed in a fault-free
environment. Once trained, the same model is reused many times
over in different hardware platforms with different fault profiles.
The GA search to find a suitable shuffle order for a given hard-
ware configuration is also a one-time cost and can be done offline.
This requires a fault injection simulator (like in [4]) and the hard-
ware fault profile to be known beforehand. These can be obtained
via diagnostic tests and simulation.

This paper makes the following contributions:

o We develop HAS, a Hardware-Agnostic Scheduler that re-

covers lost performance of DNN models on faulty hard-

*I " We use the term*“compromised hardware” as an umbrella term to indicate

hardware that is faulty either due to manufacturing defects, marginal op-
eration or reduced precision.
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ware by allocating unimportant computations to compro-
mised PEs (Section[3). This is achieved by shuffling the rows
of the matrices during multiplication. The row shuffle order
is determined by GA search.

e We analyze the fault sensitivity of DNN models and their
layers to different fault types and fault rates using bit-level
fault injection (Section[5.1).

e We determine the most suitable row shuffie orders by us-
ing HAS on the most sensitive layers and recover significant
performance (by as much as 30%) from the DNNs in com-
promised hardware (Section[5.2).

2. Related Work

A good overview of the different faults and errors in DNNs and
how they can be made more robust is given in [6]. The authors
identify stuck-at and random bit flips as the most widely and suc-
cessfully used abstract fault models. So we focus mainly on the
errors caused by these faults in this work. Our paper builds up
on the work in [4})5]]. In [4], the authors propose a bitwise fault-
injection framework for DNNs to analyze the effect of fault-rate
and performance degradation on different DNN models. They
show that is possible to leverage implicit fault tolerance proper-
ties of DNNs to improve efficiency. In [35], this is demonstrated
by lowering the SRAM voltages to improve energy performance
at the cost of increasing fault rates. They also propose fault
mitigation techniques by setting faulty bits/words to zero. The
approximate computing community has also exploited the fault-
tolerance of DNNs by using low-power approximate arithmetic
hardware [1,|11]. In [1,/7,|11], the authors characterize neuron
sensitivity and approximate low priority neurons. The drop in
performance is recovered by retraining the model. This is not a
general methodology and is not always possible due to lack of ac-
cess to datasets and computational resources. DNNs can also be
made more robust by pruning and dropout. These solutions tar-
get individual neurons/weights, which as discussed before, is not
how hardware faults generally map to the DNN computation. Our
paper focuses on a bit-level fault-model which is more realistic.

Another popular direction for reducing power and latency has
been to use reduced precision arithmetic. This is now widely sup-
ported by many ML frameworks and libraries. In [9]], the authors
propose an automated framework to determine the bitwidth re-
quired for different computations in a DNN. Their method uses a
hardware-aware optimization loop to specialize for different hard-
ware configurations. Other works such as [8]] use specialized ac-
celerator architectures with reducible precision for maximizing
throughput and minimizing energy. The focus of our work differs
from [89]] in that it is hardware-agnostic and does not necessarily
require hardware-in-loop during optimization for reduced preci-
sion.

3. Hardware Agnostic Scheduler (HAS)

3.1 Fault Models

A fault is defined as “an anomalous physical condition...which
gives rise to an error” [6]. A fault may induce an error, which is
a deviation of the logical state from the correct one. Permanent
faults are continuous and always present, arising mostly due to
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Fig. 2 Matrix-vector tiled multiplication is spread across two SM blocks and six CUDA cores. HAS
shuffles the rows of the weight matrix, using the best genes from GA search. The most critical
neuron/row (green) is allocated to the most robust cores (Cyp and C3). As a result, the correspond-
ing element of the final product vector (dark green) is not affected by the faults. The figure also
illustrates our error-injection simulation strategy to simulate hardware faults.

irreversible physical damage. A transient fault occurs for a short
period of time mostly due to process and environmental varia-
tions as well as degradation. Recurring transient faults are called
intermittent faults and these are the most common types of faults.
Intermittent faults are usually caused by marginal device opera-
tion.

We abstract the effects of these various faults using the follow-
ing bitwise fault model similar to [4H6]:

o Flip-to-0/1: a random register bit is held at either 0/1.

o Bitflip: the value of a random register bit is flipped.

The Flip-to-0/1 fault model represents many of the permanent
faults in hardware. The Bitflip fault models the transient faults in
PE SRAM registers/memory elements due to marginal operation
or external effects.

In addition to bitwise fault models, we also define a fault model
for mixed-precision computations. Although reduced precision is
not a result of an anomalous physical condition, we can model it
as a type of marginal operation. By reducing computation preci-
sion, it is possible to reduce power and latency of the hardware
significantly as shown in [9]. In this work, we model reduced
precision as a type of fault where a block of the least significant
bits of the mantissa are set to zero. We use this fault model for no
other reason than for simplifying the description and analysis of
our experiments.

3.2 Fault Injection Methodology

A bitwise fault model is much more realistic w.r.t. hardware
implementation than a neuron-wise model. We further only con-
sider faults that affect the intermediate computations of DNNs
and not the main memory elements that contain the input data
stream, weights and biases. The effects of errors in the weights
and biases in the main memory and their mitigation have been
addressed in [4][5]. We assume that the input, weights and bi-
ases are not corrupted. This way if there is any degradation in
model performance, it is solely due to incorrect computation and
not corrupt data.
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3.2.1 Tiled Matrix Multiplication

We focus on the effects of hardware faults on matrix multipli-
cations because they constitute the majority of the computations
for DNNs. Matrix multiplications consist of many multiply and
accumulate (MAC) operations that can be performed in parallel.
For general matrices, tiled matrix multiplication is preferred be-
cause it maximizes parallelization and minimizes memory con-
flicts by exploiting data locality. For instance, in nVIDIA GPUs,
large multiplying matrices are broken up into small tiles and each
tile is computed by a SM which consists of a warp of 32 CUDA
threads/cores. The partial products from each of the blocks are
summed together to give the final product. This is why we cannot
assume one-to-one mapping between neurons and PEs for DNN
accelerators. The calculation for one neuron is performed by mul-
tiple PEs and each PE is reused many times for different neurons
(Figure2).

We are interested in the effect of faulty behavior of the CUDA
cores in the SM blocks. Hence we simulate faults by injecting
errors separately into the partial products from each SM block.
This fault-injection methodology is illustrated for the case of
matrix-vector multiplication in Figure m Note that injecting er-
rors after the final matrix product has been computed does not
capture the faulty behavior of the CUDA cores in the SMs.

3.2.2 Fault Profiles and Error Instances

In this work, we assume the fault rate (FR) is the same as the er-
ror rate i.e., faults always result in errors. This is simply to make
the analysis straightforward and has no loss of generality during
analysis and experiments. We simulate faults in the GPU hard-
ware using a bitwise fault simulator similar to [4]]. The simulator
injects errors into the computation executed by a PE with a prob-
ability that is determined by its fault rate (Figure ). The fault
profile of the accelerator (GPU) describes the different fault rates
of its PEs (CUDA cores). At each time step, an error instance
is sampled from the fault profile. The error instance determines
whether or not if a particular PE is faulty.

3.2.3 im2col Optimization
Naive implementation of the convolution operation is ineffi-
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cient. It is also easily one of the most compute intensive com-
ponents of DNNs especially when there are multiple kernels and
channels. A popular approach for implementing convolution op-
erations is to flatten the kernel matrices, extract patches of the im-
ages into columns (im2col) and perform Multiple Channel Multi-
ple Kernel (MCMK) convolution using existing GEMM libraries
[2]. This decreases the latency of the convolutional operation at
the expense of larger memory use. This method of convolution
is the most widely used and is present in many of the popular
deep learning frameworks. We assume convolution operations
are optimized using im2col method and implemented as GEMM.
Thus fault injection in convolution operation is similar to that for
matrix-matrix/vector multiplications.

3.3 GA Problem Statement for HAS

The main objective of HAS is to achieve better scheduling of
computation in faulty hardware to recover lost performance. HAS
achieves this by shuffling the matrix rows before multiplication.
After computation, it “reshuffles” the rows of the product back
to the original order after so that the mathematical semantics are
preserved. By permuting (shuffling) the order of the rows, we get
some (limited) control over where these computation take place
within the accelerator. The number of possible ways in which
one can shuffle the rows of a matrix with n rows is n!. This is a
huge optimization space and exhaustive brute force search is not
possible. HAS uses GA search to find a suitable shuffle order. Ex-
changing rows does not have high computational/temporal com-
plexity so the overhead is minimal for HAS. The row-exchange
usually involves changes in the metadata of the tensor i.e., only
the tensor “view” changes and no actual data is copied to/from
the memory. When implemented this way, the temporal com-
plexity is O(1). Furthermore, since all the rows for a PE block are
usually loaded into a shared memory pool, row-exchanges do not
increase the cache miss rates significantly.

3.3.1 Genetic Representation

GA is especially suitable for this search problem because it is
highly parallelizable and defining the fitness functions and chro-
mosomes is quite straightforward. HAS uses GA to find the row
shuffle order for a given matrix multiplication for a known hard-
ware fault profile. This is done offline. If the fault profile is not
known beforehand, it can be obtained from diagnostic tests. If
that is also not possible, one can run GA optimization online with
the faulty hardware to find the best solution.

We define the chromosome to be an array of integers that rep-
resents the row-exchange order for the multiplier matrix. The
length of the chromosome is equal to the number of rows of the
matrix. The genes (i.e., the element positions of the chromosome)
represents the PEs that compute the row indicated by the allele
(i.e., the value of the gene). This means each gene position g;
maps to a set of PEs (CUDA cores) S; € {C;,Cj,...}. If g; con-
tains the allele (value) a;, then row a; of the multiplier matrix is
scheduled to be computed by the PEs in §; (Figure2).

The mapping of genes to actual hardware is not in our con-
trol and is usually not known. However, this is not a problem
as long as the internal scheduling of the accelerator is consistent.
Consequently, our method is independent of the inner workings
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of the accelerator. Of course, it is possible to get more control
over the scheduling by accessing the accelerator firmware. How-
ever, this results in a highly specialized solution for a very specific
hardware-DNN model pair for a very specific fault profile. This
is not a general solution and usually not possible in proprietary
hardware. Our method is agnostic to the microarchitecture of the
accelerator hardware. If the fault profile changes, it is always pos-
sible to re-run the GA search find a suitable scheduling scheme
(shuffle order) for HAS.
3.3.2 Fitness Function

A DNN model inference involves a number of matrix multi-
plications. We associate one chromosome for each matrix multi-
plication that is optimized by HAS. For a given fault profile and
a set of chromosomes, the fitness function is simply the top-1
classification accuracy of the model when the computation is im-
plemented on that hardware with the row shuffle orders as de-
termined by the corresponding chromosomes. Every generation,
the best N individuals from a population are selected to be par-
ents. These parents generate new offspring through mutation and
crossover. When the genetic information from two parents are
recombined in a random manner to create a new solution, it is
called crossover. During mutation, the genetic sequence is ran-
domly and arbitrarily modified to bring diversity to the new gen-
eration of population. The fitness of the offspring is evaluated and
the best N individuals become parents for the next generation.

4. Evaluation Setup

4.1 DNN models

We use two types of DNN models for evaluation: mnist32-
cnn and fashion-cnn. mnist32-cnn consists of one convolutional
layer (c0) with 32 (4 x 4) kernels followed by three dense lay-
ers (h0,h1,h2) and a final output layer (op). The model is trained
using the MNIST dataset [3|] with the images resized to 32 x 32
(for faster fault-injection simulation). fashion-cnn consists of two
convolutional layers, cO and cl, each with 32 (4 X 4) kernels.
This is followed by two dense layers (k0 and op). It is trained
with dropout on the Fashion-MNIST dataset [[10] with 28 x 28
images. The fault-free accuracy of mnist32-cnn is about 99%
whereas fashion-cnn is about 92%. We train three instances of
mnist32-cnn and fashion-cnn each using different seeds.

We analyze the fault sensitivity of each of the model instances
by injecting different types of errors into each of their layers one-
by-one. If faults in a particular layer significantly degrade the per-
formance, we use GA search to find the best chromosome (row-
exchange order) for HAS.

4.2 Fault Profiles

We consider an nVIDIA GPU-based DNN accelerator for our
experiments. This is simply for the sake of example and there is
no loss in generality during fault-sensitivity analysis and recov-
ery with HAS. We assume the GPU has 20 streaming multipro-
cessors (SMs) and each multiprocessor has 32 PEs (i.e., CUDA
cores). We consider only 20 SMs per GPU to keep our simula-
tions tractable. Each CUDA core has a fault rate i.e., probability
of a fault manifesting and resulting in an error.

The probability distribution of the FR of each CUDA core is
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Table 2  Sizes of matrices in different layers

Error Description Max. Fault Rate Model Layer | Weights/Kernel Matrix | Input Matrix/Vector
Flip-to-0 | Flip a random bit in the exponent to 0 1E-1, 2E-1, 5E-1 c0 32x 16 16 x (29 x 29)
Flip-to-1 | Flip a random bit in the exponent to 1 1E-3, 2E-3, 5E-3 hO 1024 x 6272 6272 x 1
BitFlip Flip a random bit in the exponent 1E-3, 2E-3, 5E-3 mnist32-cnn | hl 256 x 1024 1024 x 1
TF32 Set the last 13 bits of mantissa to O 1E-1, 2E-1, 5E-1 h2 64 x 256 256 x 1
BF16 Set the last 16 bits of mantissa to O 1E-1, 2E-1, 5E-1 op 10 x 64 64 x 1
c0 32x16 16 X (28 x 28)
e [T o=t
determined by the fau.ll profile of Fhe GPU. We .use ?IX different op T0 % 1024 037 <1
types of fault profiles in our experiment and distinguish between
them by the maximum fault probability (FR,,,) . Thus a GPU
with a fault profile characterized by FR,,,, means that each of
its CUDA cores have different fault probabilities (including zero Range of Activation Values for mnist32-cnn
for non-faulty PEs) but none exceed FR,,. At each timestep, 2] 201 30
each CUDA core is either faulty or non-faulty with a probability 31 151 L%
distribution that depends on its particular fault rate. We assume 21 101 10
that faulty operation of the CUDA cores are independent events 1 57
. . . 01 L
for the sake of generality; although in practice, there may be g 07 0
some strong correlation between the FRs of spatially neighbour- ] =51 F-10
ing CUDA cores due to shared power/data bus, thermal hotspots _31 S L I . : : 20
c0 ho h1 h2 op

etc.

For our evaluations, we generate artificial fault profiles of the
GPU for a given FR,,,, by randomly assigning a FR € (0, FR )
for each CUDA core. For a given FR,,,,, we instantiate two differ-
ent fault profiles using different seeds to represent different hard-
ware profiles. These hardware profiles represent different types
of hardware with manufacturing/aging defects, or the marginal
behavior due to power optimization schemes, or heterogeneous
PEs with reduced precision.

4.3 Error Types

At each time step, error instances are derived from the fault
profile using random binomial sampling. Based on the fault
model described in Section [3.I] we simulate five different types
of errors. These errors and their corresponding FR,,,, are listed in
Table[T] We are primarily interested in bitflips that happen only
in the exponent field of the FP32 data because they affect the per-
formance most strongly. Our preliminary evaluations show that
bitflips in mantissa are not very serious because they do not cause
large enough deviations from the correct value.

We also define mantissa truncation as an “error” for sake of
consistency in description. While individual bitwise errors in
mantissa are not very serious, truncating out a block of mantissa
bits affects the performance of the model significantly [9]]. TF32
and BF16 are popular truncation schemes used in DNN and ML
frameworks. We emulate this reduced precision by setting some
number of mantissa least significant bits to zero. Fault sensitiv-
ity analysis using TF32 and BF16 errors gives us an indication of
how sensitive the DNN is to the precision offered by the mantissa
bits and how much recovery can be expected. This scenario may
arise in cases when the same model has to be implemented on
different hardware platforms that contain a mixture of PEs that
compute using different precision [8]], and where hardware-in-
the-loop optimization may not be practical. In such a case, we
would like to know whether shuffling the rows using HAS can
recover some of performance lost due to mixed precision arith-
metic. For the sake of generality, we consider an extreme case
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Fig.3 The range and distribution of the matrix multiplication products in
different layers for mnist32-cnn (before ReLU or softmax).

(i.e., a harder optimization problem) of a GPU with heteroge-
neous CUDA cores that randomly switch between different levels
of precision (FP32, TF32 or BF16) with a fixed probability. Of
course, this is unrealistic and in practice, the CUDA cores would
be regularly arranged and their precision would be controlled de-
terministically.

4.4 Metrics and Evaluation Parameters

The performance of a model is measured by evaluating its clas-
sification accuracy on the test images (i.e., images not seen during
training). Since errors manifest stochastically for a given fault
profile, we evaluate the model three times with that profile and
report its mean and standard deviation. The fitness function for
the GA algorithm also uses the mean over three evaluations of the
model for a given fault profile and shuffle order.

Each GA optimization run is performed three times and we use
the best chromosomes out of each run (one run lasts for 100 gen-
erations). We limit the population size to 20 with a Crossover
Rate (CR) at 0.6 and Mutation Rate (MR) of 0.2. During each
generation, the fittest 20 individuals are selected for breeding and
generating the next batch of individuals (truncation selection).
This is faster than probabilistic selection like the Roulette wheel.
Moreover, we observe that most individuals have very close fit-
ness values so Roulette wheel type selection mechanisms are not
worth the additional time and computation. The hyperparameters
for GA were determined using a grid search. We use the same
GA hyperparameters across all our experiments for consistency.
However, there is much room for improvement if one were to use
different hyperparameters depending on the model and the DNN
layer. We leave this finer hyperparameter search problem for fu-
ture work.
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Fig. 4 Sensitivity of different layers to bitwise errors in the exponent field.
Layer c0 is most sensitive due to high kernel reuse.

5. Experimental Results

5.1 Fault Sensitivity Analysis
5.1.1 mnist32-cnn

Figures[]and5]show the fault sensitivity for different layers of
mnist32-cnn. The figures report the mean and the standard devi-
ation of the performance degradation across all model seeds and
error profile seeds. In Figure[d] we observe that the classification
accuracy degrades gracefully with increasing fault rates. This is
encouraging because it shows that errors in computation do not
automatically imply catastrophic failures in DNNs. For mnist32-
cnn, layer c0 is the most sensitive to Flip-to-1 and Bitflip errors
and contributes most to performance degradation. These obser-
vations concur with the results in [4]. The degradation becomes
significant when fault rates exceed 5e—3.

We hypothesize that the reason behind c0’s sensitivity to these
errors is due to i) the limited range of the output of the convo-
lution layer and ii) the high reuse of the kernel matrix. From
Figure [3] we observe that the outputs of the convolution matrix
multiplication (before ReLLU activation) are tightly concentrated
around 0. When an exponent bit is accidentally flipped to 1, the
resulting error is quite large. If the change is in the positive direc-
tion, this error is propagated through the ReLU and maxpool lay-
ers and thus affecting the rest of the DNN computation pipeline.
Secondly, from Table 2] we see that ¢0 convolution has a small
kernel matrix which spans over a few PEs. These PEs are reused
many times over the im2col patches extracted from the image.
Thus, recurring errors in the PEs containing the kernel matrix are
expressed many times during the convolution thus amplifying the
effect of the error. The work in [4]] also follows a similar reason-
ing.

In contrast, layers h0-h2 span over a large number of PEs due
to their large sizes but are used only once for multiplying a fea-
ture vector (because inference is usually one image at a time).
Hence, the errors in 40-h2 layers do not cause significant degra-
dation. Among the fully connected layers, /2 is the most sensitive
to Flip-to-1 and Bitflip errors. This is probably due to its proxim-
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Fig. 5 Flip-to-0 errors are benign even at very high fault rates. Mantissa
truncation affects output layer (op) the most severely.

ity to the output layer. Any bitwise errors in its exponent causes a
large deviation resulting in wrong neurons being activated in the
output layer.

In Figure 5] we observe that Flip-to-0 errors cause very little
performance degradation (less than 5%) even at very high fault
rates. This seems to hold true irrespective of the model and the
layer in which this error manifests (see also Figure[6). In fact,
the authors in [5]] purposefully set bits to zero when error is de-
tected, as a fault-correction technique. As stated in [E]], only a
few neurons fire at a time while the rest are inhibited. Since it is
more probable that a neuron does not fire, a Flip-to-zero (which
inhibits firing) is more benign that Flip-to-1 (which may activate
accidental firing).

Truncating the LSBs of mantissa (TF32, BF16) does not cause
dramatic degradation even at very high fault rates (Figure[3). This
observation is in agreement with the idea behind aggressive preci-
sion reduction techniques used in [9]]. Mantissa truncation errors
affect output layer the most. It is interesting to note that the out-
put layer is relatively more immune to Flip-to-1/Bitflip error than
mantissa truncation when compared with the other layers.

We reason that this is due to the precision sensitivity of the
final softmax activation as a result of the “squashing” effect of
the exponential function in softmax. The product of the output
layer matrix multiplication is a vector of ten elements (one for
each image class). This vector is fed into the softmax activation
which squashes them using an exponential followed by normal-
ization. When the elements of the vector have similar values, he
softmax operation is sensitive to the precision. Mantissa trun-
cation reduces this precision and therefore introduces significant
error into the final class scores. On the other hand, exponent bit
errors result in very large changes that overwhelm the softmax
output. However, since the op layer multiplication for mnist32-
cnn requires only a few PEs, the overall effect of exponent bitwise
errors is not very pronounced.

5.1.2 fashion-cnn

The fashion-cnn model has two convolutional layers. It is
trained with multiple dropout layers and therefore it is more ro-
bust and can tolerate error rates almost two orders of magnitude
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Fig. 6 fashion-cnn is more robust to errors. At FR,,,,=500e-3, c0 and c!
are most affected causing significant degradation.

higher than mnist32-cnn (Figure [6). Similar to mnist32-cnn, the
convolutional layers c0 and ¢/ are most sensitive to Flip-to-1 and
Bitflip errors. We reason that ¢/ is more sensitive than c¢0 due
to larger kernel size and the more kernel reuse. Although the
degradation due to only one of the convolutional layers is not
very much, when both c0 and c/ have errors, the degradation can
be very high.

The fashion-cnn model is very robust to mantissa truncation.
Even at error rates as high as 0.5, the degradation is only a few
percentage points. This indicates that the precision of PEs can
be aggressively reduced without significant performance degra-
dation.

5.2 Performance Recovery with HAS

Now that we have identified the which layers are most sensi-
tive to which errors, we use our GA-based HAS and observe what
performance can be salvaged. Specifically, we use HAS for

e ¢0 layer in mnist32-cnn for Flip-to-1 and Bitflip errors

(FRyax = le=3, 2e-3, 5e-3).
e h2 and op layers in mnist32-cnn for mantissa truncation er-
rors - TF32 and BF16
(FRypax = 100e-3, 200e-3, 500e-3).
e 0 and cI layers in fashion-cnn for Flip-to-1 and Bitflip er-
rors (FR,,,,: = 500e-3).
Other layer-error combination scenarios have very little degrada-
tion so we can assume that they are effectively running on non-
faulty hardware. Of course, we cannot expect the performance to
recover completely on faulty hardware but as we shall see, HAS
comes pretty close.
5.2.1 mnist32-cnn

The stacked bar plots in Figurem show the performance degra-
dation due to Flip-to-1 and Bitflip errors in cO and the subse-
quent recovery by HAS using the shuffling order obtained from
GA search.

We observe that HAS is able to recover almost 30% of the lost
accuracy (from ~55% to ~85%) when FR,,,, = 5e-3. This is a
huge gain in performance by simply shuffling the rows. For lower
fault rates, HAS is able to recover almost all lost performance.
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Fig. 7 HAS recovers model performance by as much as 30% in mnist32-cnn
models for Flip-to-1 and Bitflip errors.
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Fig. 8 HAS can recover model accuracy when using reduced precision with-
out any retraining or sophisticated hardware-in-loop optimization.
We don’t have to use HAS for all layers. Some layers (h0, hl) are
quite robust and the amount of recovery from HAS is not worth the
computational effort required by GA search.

If we refer to [3]], fault rates of le—3 correspond to about 50%
power savings. Thus, by using HAS, we can aggressively lower
SRAM voltages and gain 50% power savings with almost no loss
in model accuracy or latency. This is quite significant, especially
when all it costs is to shuffle the rows of the tensors before and
after multiplication.

The performance degradation due to mantissa truncation and
recovery using HAS for h2 and op layers is shown in Figure
HAS recovers 2-4% accuracy points for 22 and op layers individu-
ally. When both layers undergo mantissa truncation, it is possible
to recover almost 5% accuracy points (h2-op). While this is not as
dramatic as the 30% recovery for c0 layer, it still shows that it is
possible to recover from some performance degradation when ex-
ecuting models in heterogeneous hardware with mixed precision.
It is worth noting we have used extremely unrealistic and severe
truncation errors for the sake of generality. During actual im-
plementation, PEs do not sporadically change their precision and
they are not randomly scattered throughout the hardware. Rather,
they are arranged in a structured manner with controllable deter-
ministic precision scheduling. In such a case, we can expect GA
to find a much more optimized solution for much higher perfor-
mance recovery.

5.2.2 fashion-cnn

The fashion-cnn model is much more robust than mnist32-cnn.
Significant degradation is observed only when error rates reach
as high as 500e-3 for Flip-to-1 and Bitflip errors. This translates
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Fig. 10 GA convergence rates for different fault profiles. The rate differs
with types of layers, models and fault profiles.

to power savings of approximately 60%. We use HAS to recover
some of the lost performance due to errors in cO and c/, which
is shown in Figure 0] We observe that HAS is able to recover
about 5% accuracy for each layer individually and around 10%
when errors are present in both layers (cO-cl). When errors are
present only in c0, we can expect almost full performance recov-
ery. Even at such high error rates, we can expect HAS to recover
the performance of the model by simply shuffling the rows. At
“lower” fault rates (100e—3, 200e—3) there is little degradation,
so using HAS doesn’t have any significant improvement.

5.3 GA Convergence

Figure@shows how the accuracy of the model improves non-
decreasingly as we increase the number of generations for GA
optimization. This means that it is possible to get better chro-
mosomes if we let the GA optimization run for longer period of
time. This is a major advantage over random search where it
is not guaranteed that the solutions will get better as the search
progresses. The designer can also decide when to stop the GA
optimization. Furthermore, we see that the starting points and the
rate of improvement is different for different fault rates, layers
and models. Thus, the designer is free to choose different GA
parameters when optimizing for different layers/error types and
fault profiles.

6. Conclusion and Future Directions

It is possible to extract significant energy gains and reduced
latency for DNN computations by using faulty/marginal hard-
ware. Our proposed HAS: Hardware Agnostic Scheduler allo-
cates non-critical computations of DNNs to compromised PEs to
minimize the performance degradation. It achieves this by shuf-
fling the rows of the matrices during matrix multiplication. The
row-shuffling order is determined using GA-based search. With
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HAS, we are able to recover up to 30% of classification accu-
racy for fault rates which correspond to power savings of approx-
imately 50%.

We have focused only on inference in this work. Analyzing
the fault sensitivity of different models and architectures during
the training process is an interesting research avenue. Another
promising direction would be to investigate how hardware faults
affect other DNN acceleration techniques such as depthwise and
pointwise convolutions. Mixed precision arithmetic for training
and inference is very popular now-a-days and performance re-
covery from faults in highly aggressive reduced precision (INTS,
INT16) platforms would be very interesting for the research com-
munity. In addition, there are many opportunities to refine the
hyperparameters for GA. Developing a general GA problem def-
inition methodology for HAS would be extremely helpful when
implementing HAS in the real world.
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