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ABSTRACT Unlike most classical algorithms that take an input and give the solution directly as an output,
quantum algorithms produce a quantum circuit that works as an indirect solution to computationally hard
problems. In the full quantum computing workflow, most data processing remains in the classical domain
except for running the quantum circuit in the quantum processor. This leaves massive opportunities for
classical automation and optimization toward future utilization of quantum computing. We kick-start the first
step in this direction by introducing Q-gen, a high-level parameterized quantum circuit generator incorpo-
rating 15 realistic quantum algorithms. Each customized generation function comes with algorithm-specific
parameters beyond the number of qubits, providing a large generation volume with high circuit variability.
To demonstrate the functionality of Q-gen, we organize the algorithms into five hierarchical systems and
generate a quantum circuit dataset accompanied by their measurement histograms and state vectors. This
dataset enables researchers to statistically analyze the structure, complexity, and performance of large-scale
quantum circuits or quickly train novel machine learning models without worrying about the exponentially
growing simulation time. Q-gen is an open-source and multipurpose project that serves as the entrance for
users with a classical computer science background to dive into the world of quantum computing.

INDEX TERMS Quantum algorithm, quantum circuit, quantum simulation.

I. INTRODUCTION
The development of quantum mechanics has promoted the
birth of quantum computing. To simulate large quantum
systems, a new type of computer that operates based on
the rules of quantum mechanics will inherently perform
better than any classical computer [1]. In the past few
decades, the potential of quantum computing has been
demonstrated in many areas, including condensed-matter
physics, high-energy physics, and chemistry [2]. Recently,
the rapid progress in quantum information theory has re-
vealed that quantum computing can be applied to a much
broader field other than just performing simulations. One
of the most promising directions is using quantum comput-
ing to efficiently solve classically intractable problems [3].
This is an exciting new area for many computer sci-
ence researchers. However, they still face a steep learn-
ing curve, mostly because the principles used for quantum

computation are fundamentally different compared to
classical computing.
The introduction of quantum computing to the classical

computing community has been disruptive. The vast majority
of literature on quantum computing comes from either math-
ematics or physics background, and practical applications
from quantum computers are still not feasible due to heavy
noise and limited qubit count. Although quantum computing
research is still mostly theoretical, the recent development
of noisy intermediate-scale quantum (NISQ) computing has
proved that classical computing has great potential to help
utilize quantum computers in their current state. Even in
the post-NISQ era when large-scale fault-tolerant quantum
processors are realized, the probabilistic nature of quantum
measurements and the pre/postprocessing involved in most
quantum algorithms will still require support from classical
computers [4].
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FIGURE 1. Typical workflow of circuit model quantum computing. The
classical system takes the computing problem and data from the user to
construct a quantum circuit. The circuit is then transpiled into low-level
representation to be executed on the quantum hardware. This work is
aimed at automating the quantum circuit generation step.

Fig. 1 illustrates a typical circuit model quantum comput-
ing workflow, which shows that the majority of computing
tasks are performed in the classical domain. We envision that
a complete quantum computing process will always involve
some classical components, so classical design methods and
computing tools are indispensable in accelerating the devel-
opment of quantum computing. For example, while the cur-
rent quantum hardware is still catching up on reducing noise,
we can improve the high-level circuit to use fewer gates or
find better transpilation logic to minimize the qubit count.
We can also investigate different routing/placement policies
to more efficiently utilize the existing qubit connections and
deploy error-mitigation algorithms to further reduce error
rate. All these research topics call for a large supply of prac-
tical quantum circuits to help with testing and evaluation.
However, quickly obtaining various quantum circuits is still
not a straightforward task.
This work introduces Q-gen, a quick and efficient tool

to create high-level realistic quantum circuits. For computer
science researchers with a limited background in quantum
physics, Q-gen removes the knowledge barrier and enables
a rapid workflow from problem description to the resultant
quantum circuit. Q-gen includes 15 well-known quantum
algorithms targeted for different computing problems and
offers a modular parameterized generation process. In addi-
tion to specifying the number of qubits of the circuit, Q-gen
also provides algorithm-specific generation parameters for
more variability, making it possible to produce many circuits
with different structures that belong to the same algorithm.
The circuits are generated as Qiskit [5] circuit objects, which
can be modified and investigated using the native tools from
the Qiskit library. This high-level representation offers great
portability as it can be either saved directly as a .qpy file
or easily translated into other lower level descriptions like
openQASM [6].

To demonstrate the generation capability of Q-gen, we
present the Q-gen quantum circuit dataset consisting of 454
circuits. These circuits are produced with various genera-
tion parameters from all 15 available algorithms, ranging
from shallow circuits with no cnot gates to deep circuits
with more than 50 000 cnot gates. Many research projects
involve analyzing the output of a quantum circuit, but

simulating large circuits can easily cost hours to days. To
remove this time overhead for researchers, we also provide
ready-to-use simulation results in our dataset as measure-
ment counts and state vectors. Based on the statistics of the
Q-gen circuit dataset and the analysis of the simulation result,
we organized the quantum algorithms into five hierarchical
systems with intuitive algorithm complexity ratings, offer-
ing a systematic way to quickly understand the origin and
application of quantum algorithms.
The contributions of this work are as follows:

1) a quantum circuit generator based on Qiskit that sup-
ports 15 practical algorithms, offering high variabil-
ity with algorithm-specific generation parameters for
quantum algorithm developers;

2) a high-level quantum circuit dataset containing large-
scale circuits and their noise-free outputs, provided as
measurement counts and state vectors to support the
design and optimization of quantum circuits;

3) an organized quantum algorithm system explaining
their origin and connections, offering a systematic un-
derstanding for new quantum computing researchers;

4) a heuristic analysis of the Q-gen quantum circuit
dataset, presenting the idea of algorithm complexity
categorized by their applications;

5) open-sourced publication for better community
collaboration and future upgrades.

The rest of this article is organized as follows. Section II
gives the background and prior research related to quantum
circuit generation and optimization. Section III introduces all
the available algorithms in Q-gen and explains the generation
parameters. Section IV explains the design philosophy of
the Q-gen algorithm system and presents the analysis of the
Q-gen circuit dataset. We discuss the practical applications
and future improvements of Q-gen in Section V. Finally,
Section VI concludes this article.

II. BACKGROUND AND RELATED WORKS
A. CIRCUIT MODEL QUANTUM COMPUTING
The quantum circuit computing model is analogous to
classical digital computing, where computations are
performed using a sequence of logic gates. In the quantum
circuit model, quantum computations are carried out using
quantum gates, which are a series of unitary matrix operators
that introduce a state or phase transition on the qubit(s) it acts
on. Qubits are the fundamental units of quantum information,
capable of existing in a superposition of states and entangling
with others. These properties enable quantum computers to
solve certain problems exponentially faster than classical
computers.
In a typical circuit model quantum computing work-

flow, the quantum algorithm is described using a high-level
quantum circuit, and then, circuit transpilation compiles the
circuit into low-level hardware-specific instructions [7] for
execution. In this process, the circuits are optimized to
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reduce extra swap gates [8], [9], and various policies [10],
[11], [12] are applied to search for the best placement of the
qubits on the quantum processor. In addition, software error
mitigation [13], [14] and hardware error correction [15], [16]
techniques are developed to reduce the negative effect of
decoherence and communication noise.

B. QUANTUM CIRCUIT GENERATION AND DATASET
Several open-source frameworks exist to help automate or
assist in creating quantum circuits. Qiskit [5], Cirq [17], and
Braket [18] are three major quantum computing frameworks
that provide prebuilt components and templates for generat-
ing higher level quantum algorithms. All the frameworks also
support the OpenQASM [6] representation for lower level
representation of quantum circuits.
Currently, we believe that no projects are specifically tar-

geted for high-level quantum circuit generation, but many
works focused on quantum benchmarking usually include
some low-level circuit dataset or a lightweight circuit
generator with limited functionality. The SupermarQ [19]
benchmark suite includes eight application circuits and a
circuit generator parameterized by the number of qubits. The
QASMBench [20] benchmark suite provides more than 50
openQASM implementations of various scales of quantum
circuits in different qubit settings. The Application-Oriented
Benchmarks [21] offer 11 algorithms categorized into three
groups with a specialized generator for creating random
benchmark circuits.

C. ARTIFICIAL INTELLIGENCE FOR QUANTUM
COMPUTING
Artificial intelligence (AI) has experienced explosive de-
velopment since the mid-2010s. In addition to the classi-
cal optimization methods mentioned in Section II-A, there
is a growing interest in using AI to help accelerate the
development of quantum computing. This also gives a strong
motivation for our work because machine learning (ML)
models require a large number of quantum circuits with high
variability for efficient training.
For ML-based circuit optimization, there are works on

using large language models to design better quantum cir-
cuits [22] and using Transformers to simplify cnot cir-
cuits [23]. Deep reinforcement learning techniques are also
explored to minimize the number of t gates [24]. Many
works proposed different ML models for predicting the out-
put fidelity of quantum circuits [25], [26], [27], [28], [29],
which can be used for finding better layout and improve cnot
routing. These works amplify the demand for a more realistic
and flexible quantum circuit dataset for better training. New
research areas that have the potential for AI integration can
also benefit from a large supply of quantum circuits. One
example is circuit knitting, a technique of cutting the full
circuits into smaller pieces for more efficient execution [30],
[31], [32].

III. Q-GEN: ALGORITHM DESIGN AND ANALYSIS
In this section, we introduce the quantum algorithms in-
cluded in Q-gen. We explain the significance of the algo-
rithms, the Q-gen implementation with the available gener-
ation parameters, and the potential applications. Each algo-
rithm is accompanied by a circuit complexity visualization
consisting of gate statistics and circuit size data, controlled
by the algorithm-specific problem size parameter. The
example circuits included in Figs. 2–6 are generated by Q-
gen using the simplest available generation parameters.

A. DEUTSCH–JOZSA ALGORITHM
TheDeutsch–Jozsa algorithm [33] determines whether a spe-
cial boolean function f is constant or balanced: a constant f
will always output all 0 or 1 regardless of the input, and a
balanced f will always output 0 for half of the input and 1
for the other half. Classically, at least two queries to f are
required to find the answer, but the quantum version of this
algorithm only requires one query.
Q-gen can generate the oracle with both types of boolean

functions, and the oracle width is decided by the problem
size parameter. The constant oracle is a very simple oracle
that only applies x gate to the output qubit; the balanced or-
acle adds more circuit complexity by creating entanglement
with cnot gates. Intuitively, as the problem size grows,
the depth of the generated circuit remains constant for the
constant oracle, and the number of single-qubit gates grows
linearly, shown in Fig. 2. If the oracle is balanced, the depth
and number of cnot gates both grow linearly.
This algorithm is useful for generating simple circuits (no

cnot gates) with constant depth but growing width. The only
other algorithm in Q-gen that has a similar circuit complexity
pattern is the quantum key distribution algorithm, but its
number of single-qubit gates and measurements is doubled.

B. BERNSTEIN–VAZIRANI ALGORITHM
The Bernstein–Vazirani algorithm [34] solves problems sim-
ilar to but harder than the Deutsch–Jozsa problem. The
hidden function in this algorithm returns 0 or 1 based on the
bitwise product of the input string with a hidden “secret”
string s. The goal is to find s with as few queries to the
oracle as possible. The best classical solution must query
every input bit of f . In contrast, the quantum version of this
algorithm only requires one query.
Q-gen can generate the Bernstein–Vazirani oracle ran-

domly or based on a binary string, with its width controlled
by problem size. The oracle places the control of the
cnot gate on the input qubit if s = 1 and leaves the qubit un-
touched if s = 0; the target of all cnot gates are placed on the
additional phase-kickback qubit. The growth pattern of the
Bernstein–Vazirani algorithm is similar to the Deutsch–Jozsa
algorithm, but as problem size increases, the depth and
number of cnot gates all grow linearly at a higher rate.
This algorithm is good for generating elementary quan-

tum circuits with some entanglement. Also, the output of
the Bernstein–Vazirani circuit is easily verifiable without
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FIGURE 2. Q-gen quantum circuit dataset statistics and example circuit of the (a) Deutsch–Jozsa algorithm, the (b) Bernstein–Vazirani algorithm, and
(c) Simon’s algorithm. Circuit width/depth is the number of qubits/steps in the circuit. U/CX/Measure means Unitary (single-qubit) gate/CNOT (two-qubit)
gate/measurement gate. For this group of algorithms, the main generation parameter (problem size) is the qubit width of the oracle. The gate and
circuit statistics all increase linearly, which indicates that these circuits are relatively simple to generate and simulate. Note that there are no CNOT gates
in the Deutsch–Jozsa algorithm. The circuit visualizations in this algorithm group indicate a clear initialization-oracle-measurement structure.

any postprocessing, which makes it a good candidate for
quantum benchmarking.

C. SIMON’S ALGORITHM
Simon’s algorithm [35] has proved that quantum comput-
ers can offer exponential speedup over their classical coun-
terparts. The oracle function f in Simon’s problem can be
one-to-one or two-to-one according to a secret string s.
Similar to the Deutsch–Jozsa algorithm and the Bernstein–
Vazirani algorithm, we want to determine the type of f as
fast as possible. While the best classical solution requires
O(

√
2n) queries, the quantum algorithm only requires O(n)

queries [36], achieving exponential speedup.
The circuit structure of Simon’s algorithm is special in

terms of circuit width. Although problem size is still
defined as the oracle width, the generated circuit will have
a qubit count that doubles the number of problem size.
Upon measurements, the result will be multiple guesses re-
lated to the secret string s, and s can be revealed with some
moderate postprocessing. Simon’s algorithm requires more
cnot gates than the other two query algorithms in Q-gen,
and the growth rate for the number of cnot gates is approx-
imately 2× of circuit depth, as shown in Fig. 2.

Simon’s algorithm has the highest circuit complexity com-
pared with the Deutsch–Jozsa algorithm and the Bernstein–
Vazirani algorithm, considering their simulation time and
the number of cnot gates at the same problem size.
Since it requires multiple shots and postprocessing to find
the correct answer, Simon’s algorithm is good for testing the
full quantum plus classical hybrid computing workflow.

D. QUANTUM FOURIER TRANSFORM
Quantum Fourier transform (QFT) [37] is the quantum
implementation of the classical discrete Fourier transform
(DFT). To perform DFT on 2n elements, classical algorithms

like the fast Fourier transform require O(n2n) operations.
QFT only needs O(n2) operations, which is exponentially
fewer than the classical algorithms [3]. Note that QFT does
not directly solve any specific problems; if the qubits are
measured in the computational basis, the result will appear
random as they have been transferred to the Fourier basis.
Q-gen takes problem size as the circuit width and

generates the bareboneQFT subroutine. Although this circuit
can be directly integrated into other higher level algorithms,
it is not directly verifiable. Q-gen provides three generation
parameters that make verification possible: the qubits can be
initialized in the Fourier basis using an integer input, and
the QFT subroutine can be inverted to transform the qubits
into the computational basis. Bymeasuring the qubits, the re-
sult will be the integer number used for initialization. While
QFT’s circuit complexity growth pattern is exponential, as
shown in Fig. 3, it is still a very efficient implementation
since the depth only reaches around 4000 when problem
size is 47 qubits.
QFT is the building block for many practical quantum

algorithms, so reducing its circuit complexity and at the same
time increasing its accuracy is an important research topic.
For instance, the approximate QFT algorithm can ignore
phase rotations below a certain threshold and still yield the
correct result with acceptable error [38]. Q-gen’s parame-
terized generation offers a quantitative approach to quickly
analyze the behavior of various QFT circuits.

E. QUANTUM PHASE ESTIMATION
Quantum phase estimation (QPE) [40] is one of the key ap-
plications of QFT. This algorithm uses phase-kickback and
inverse QFT to estimate the phase/eigenvalue of any uni-
tary operator U = e2π iθ . The phase angle θ is recorded in
the counting qubits by the iterative controlled-U gates
applied on the eigenstate qubit. With n counting qubits and
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FIGURE 3. Q-gen quantum circuit dataset statistics and example circuit of (a) QFT, (b) QPE, and (c) Shor’s algorithm. Circuit width/depth is the number
of qubits/steps in the circuit. U/CX/Measure means Unitary (single-qubit) gate/CNOT (two-qubit) gate/measurement gate. For QFT, problem size is the
classical bitwidth of the input number to be transformed. For QPE, the circuits are generated by the number of counting qubits. For Shor’s algorithm, N
is the number to be factored. This group of algorithms shows a clear exponential growth pattern with a single-qubit gate dominance over the two-qubit
gates, and the circuit visualizations show heavy CNOT connection patterns. High-resolution circuit visualization is hosted on the Q-gen dataset Wiki
page [39].

the measurement result equal to x, θ can be estimated as
θ ≈ x/2n.
The QPE circuits from Q-gen have one eigenstate qubit

forU to act on, and n counting qubits, controlled by prob-
lem size. The estimation precision is set by the number of
counting qubits n, with the resolution equal to 1/2n. Due to
the high implementation cost of the iterativecontrolled-
U gates, the complexity of QPE circuits grows exponen-
tially, reaching a depth more than 5.0 × 105 at problem
size= 17. This causes other QPE-based algorithms to have
an even higher gate count, like the quantum walk search
algorithm.
QPE has many practical applications because some clas-

sically hard problems can be condensed to phase estima-
tion; the most famous examples include period-finding and
prime factorization. However, it is still hard to implement
QPE on current NISQ hardware due to its high circuit com-
plexity. Although we can reduce the number of counting
qubits, it also causes the estimation accuracy to drop. Q-
gen can generate a large sample of QFT circuits to form a
baseline of estimation accuracy, which can then be used to
study the tradeoff between reduced gate count and loss of
accuracy.

F. SHOR’S ALGORITHM
Shor’s algorithm [41] can factor any large number N in poly-
nomial time, better than every known classical algorithm.
Under the hood, the core problem that contributes to this
quantum speedup is the period-finding problem. If the period
r of the modular exponential function f (x) = axmodN can
be found in polynomial time, the factor(s) of N can also

be found in polynomial time. Shor’s algorithm uses QPE to
accelerate the period-finding process; the subsequent search
for factor(s) can be done efficiently using classical algo-
rithms.
Shor’s algorithm is a quantum–classical hybrid algorithm

that utilizes classical preprocessing to return a result before
the QPE subroutine if N is simple. To ensure that the al-
gorithm reaches the quantum part, N has to be reasonably
hard to factor. Specifically for Shor’s algorithm, N has to be
odd and not formed by mn for m ≥ 1 and n ≥ 2. In addition,
a random guess of a is required to kick-start the modular
exponential function, and a must be a coprime of N [3].
Q-gen automatically generates the suitable a and provides
a list of N (as problem size, up to 123) ready to use for
the quantum circuit. The main difficulty in Shor’s algorithm
is the quantum implementation of the modular exponential
function; many customized implementations exist focusing
on minimizing the gate count or using a specialized basis
gate set [42], [43]. Q-gen implements a relatively efficient
modular exponential circuit using 2n+ 3 qubits, with n equal
to the bit length of N [44], [45]. Most importantly, this im-
plementation is general regardless of N, ideal for Q-gen’s
parameterized generation process.
Like most quantum algorithms, Shor’s algorithm only dis-

plays quantum advantage over classical algorithms when the
problem size is sufficiently large [46]. Although the ability
to factor large prime numbers in polynomial time potentially
breaks the Rivest–Shamir–Adleman (RSA) cryptosystem, it
is still unclear whether this can be realized on a practical
quantum computer in the foreseeable future. As of 2023, the
largest factored RSA number has 829 bits (RSA-250) [47].
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FIGURE 4. Q-gen quantum circuit dataset statistics and example circuit of (a) Grover’s algorithm, (b) quantum counting, and (c) quantum walk
algorithm. Circuit width/depth is the number of qubits/steps in the circuit. U/CX/Measure means Unitary (single-qubit) gate/CNOT (two-qubit)
gate/measurement gate. For Grover’s algorithm, problem size is the number of qubits of the Grover oracle. For quantum counting, the main
generation parameter is the number of counting qubits. For quantum walk, the main generation parameter is the number of coin qubits. These three
algorithms solve practical problems, but they require very high quantum resources, notably in quantum walk algorithm the number of CNOT gates is over
1 000 000 when there are only three coin qubits. The circuit visualizations show that all of the algorithms in this group utilize the Grover’s oracle.
High-resolution circuit visualization is hosted on the Q-gen dataset Wiki page [39].

A quick analysis using Q-gen shows that factoring the same
number using a quantum computer requires at least 1661
qubits, excluding the auxiliary qubits.

G. GROVER’S ALGORITHM
Grover’s algorithm [48] uses the Grover oracle G and dif-
fusion operator D to accelerate search problems. G contains
logical computations that mark the target states with a neg-
ative phase, and D then amplifies the measurement proba-
bility of the marked states while simultaneously reducing
the probability of other states. For an unstructured database
with N items, Grover’s algorithm can find allM targets after
approximately

√
N/M Grover iterations (G+ D), providing

a quadratic speedup over the classical algorithms.
Q-gen can automatically generate G based on problem

size with the optimal M that only requires one Grover
iteration. The target state in G can also be specified as an
input string. Q-gen will append the appropriate number of
Grover iterations to the circuit or take this number as another
input. The width of Grover’s circuit always equals the num-
ber of measurement gates and they both grow linearly, but its
circuit complexity grows exponentially as the search space
increases. Noticeably, compared with the quantum counting
algorithm, the number of cnot gates grows faster than the
number of single-qubit gates, as shown in Fig. 4.
Q-gen offers a quick way to statistically and empirically

analyze the performance of Grover’s algorithm, especially
when the search space is large. The parameterized circuit
generation also enables an in-depth investigation of the algo-
rithm. For example, testing how different numbers of Grover
iterations affect result accuracy.

H. QUANTUM COUNTING
The quantum counting algorithm [49] can estimate the num-
ber of solutions M inside N items; it is a combination of
Grover’s algorithm and QFT. This algorithm can be seen as a
prerequisite for Grover’s algorithm since Grover’s algorithm
requires M to calculate the correct number of iterations. It
can also determine whether a solution even exists inside N
items, which can accelerate certain NP-complete problems
like the Hamiltonian cycle problem [3].

There are two groups of qubits inside the quantum count-
ing algorithm: the searching qubits iterate over the search
space N, and they use controlled Grover’s operator to mark
M on the counting qubits. The default setting of Q-gen takes
problem size as the number of counting qubits and as-
signs an equal number of searching qubits to ensure optimal
search results. The number of solutions M can be randomly
generated or specified. Under the default setting, as prob-
lem size increases, the width of the generated circuits
grows faster than the number of measurement gates. Com-
pared with Grover’s algorithm, the number of single-qubit
gates grows faster than the number of cnot gates.
Q-gen’s generation settings can be easily changed to inves-

tigate the efficiency and accuracy of quantum counting under
different problem spaces. More importantly, this algorithm
is another great candidate for benchmarking the quantum +
classical hybrid computing workflow, since it contains two
famous quantum subroutines: Grover’s operator and inverse-
QFT, plus moderate classical postprocessing.

I. QUANTUM WALK ALGORITHM
Quantum walk [50] is the quantum version of the random
walk search algorithm. On each walking step, the “walker”
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enters superposition to search all the nodes on a graph si-
multaneously. For a graph with N nodes and M targets,
approximately 1/

√|M|/N iterations are required to find all
targets [51]. This is another quantum search algorithm that
provides a quadratic speedup.
Q-gen implements the coined quantum walk, which uses

a coin to direct how the “walker” moves. Specifically, Q-gen
uses the Grover coin, equivalent to the diffusion operator
D from Grover’s algorithm. Each iteration contains a phase
oracle that marks the target states, followed by QPE using
the coined walk steps. Q-gen takes problem size as the
width of the coin and then automatically determines the
width of the node qubits and the number of counting qubits
for phase estimation. Due to the extremely high gate cost of
the coined walk steps, under the default setting, a three-qubit
coin will generate a circuit with more than 1.0 × 106 cnot
gates and more than 1.5 × 106 single-qubit gates.
Although this is a resource-intensive algorithm, many pa-

rameters are still available in Q-gen to simplify its circuit
structure. The number of counting qubits for phase estima-
tion can be reduced, or the width of the node qubits can be
set smaller. The number of iterations can also be specified,
potentially lowering the search accuracy.

J. QUANTUM KEY DISTRIBUTION
Quantum key distribution [52] is a secure quantum commu-
nication protocol based on one primary quantum principle:
measurement collapse superposition. Suppose that a sender
prepares a qubit in a specific basis and sends it through
a quantum communication channel. In that case, the re-
ceiver can retrieve the same information by measuring the
qubit in the same basis. However, if the qubit is measured
in a different basis before reaching the receiver, the qubit
collapses prematurely and the receiver will get a random
result.
Q-gen generates the full quantum circuit simulating the

key distribution process. The problem size controls
the qubit width of the circuit, equivalent to the bit width of the
key. The interception parameter controls whether an
“attacker” will be inserted before the final measurement. This
parameter causes the circuit to have mid-circuit measure-
ments, which is the only occurrence among Q-gen’s algo-
rithms. Q-gen can also simulate the circuit and output the in-
formation measured at each stage, including if the “attacker”
has been detected. The generated circuits only contain single-
qubit gates with a linear growth pattern. The depth has
two fixed variations depending onwhetherinterception
is true.
This key distribution protocol is not designed to be risk-

free. For example, if the “attacker” inadvertently picked the
same measurement basis as the sender, the interception will
go undetected. However, adding more qubits to the key can
significantly lower this risk. Q-gen’s generation parameters
provide a quick method to analyze the quantum circuit’s
complexity under different security conditions.

K. SUPERDENSE CODING
Superdense coding [53] is a quantum communication pro-
tocol that encodes 2 bits of classical information using one
qubit. This protocol requires the sender and receiver to share
a pair of entangled qubits before the transmission starts,
usually prepared by a third party. The sender can pick from
four quantum gates to apply on the qubit, corresponding
to four possible binary numbers using two classical bits.
After the receiver obtains this qubit, the message can be
decoded by disentangling the qubit pair. Superdense cod-
ing is also secure, as the entanglement will be destroyed
if any qubit is prematurely measured before reaching the
receiver.
Q-gen generates the three steps of superdense coding:

entangling, encoding, and disentangling. The problem
size controls the width of the circuit, equal to the num-
ber of qubits used for transmission. The number of cnot
gates grows linearly alongside the depth of the circuit.
The number of qubits to encode and the single-qubit gates
used for each encoding can all be specified or randomly
generated.
The superdense coding circuits are highly structured and

easy to scale up. This makes it a great candidate for bench-
marking the entanglement ability and the measurement
fidelity of the quantum hardware.

L. QUANTUM TELEPORTATION
Quantum teleportation [54] recreates the sender’s qubit on
the receiver’s side using a pair of entangled qubits and clas-
sical bits. The sender’s qubit is processed with one of the
qubits from the entangled pair and then measured to obtain a
2-bit classical data. These data are transferred to the receiver
through a classical channel, so the receiver can reconstruct
the sender’s qubit on top of the other qubit from the entangled
pair. This protocol can be seen as the opposite of superdense
coding.
The minimal teleportation circuit in Q-gen involves three

qubits. The state to be teleported is initialized on q0; the
entangled pair is created on q1 and q2. After the deferred
measurement on q0 and q1, the original state is recreated
on q2. An inverse initializer is then placed on q2; if the
state is successfully teleported, it should inverse the qubit
back to |0〉. The problem size defines how many sets
of teleportation circuits to create; thus, the generated circuit
is analogous to a classical parallel communication bus. The
number of cnot and single-qubit gates follow a linear growth
pattern, and the circuit’s depth is always fixed, as shown in
Fig. 5.

The quantum teleportation algorithm in Q-gen is easily
verifiable because the ideal measurement should always be
all |0〉. In addition, because every set of teleportation cir-
cuits is physically isolated, this algorithm can potentially de-
tect crosstalk errors between different regions on a quantum
processor.
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FIGURE 5. Q-gen quantum circuit dataset statistics and example circuit of (a) quantum key distribution, (b) superdense coding, and (c) quantum
teleportation. Circuit width/depth is the number of qubits/steps in the circuit. U/CX/Measure means Unitary (single-qubit) gate/CNOT (two-qubit)
gate/measurement gate. For both quantum key distribution and superdense coding, the problem size is the width of the circuit. In quantum
teleportation, the main generation parameter is the number of qubits to be teleported. This is another group of simple algorithms that shows linear
growth. Note that there are no CNOT gates in the quantum key distribution algorithm. The circuit visualizations demonstrate a clear modular pattern,
which is easy for parallel expansion.

M. QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM
The quantum approximate optimization algorithm (QAOA)
[55] can approximate the solution of the combinatorial
optimization problem. For complex optimization problems
likeMaxCut andMax-kXOR, theQAOAgives higher quality
solutions and takes less time compared to the classical algo-
rithms [56]. The cost function from the combinatorial op-
timization problem is encoded into a quantum circuit called
variational form; then, the expectation value can bemeasured
repeatedly to optimize the parameters of the cost function,
ultimately converging to the solution.
The QAOA circuit in Q-gen is based on the popular Max-

Cut problem, which tries to partition a graph so that the num-
ber of edges between the two sets of nodes is maximum. Q-
gen generates the variational form based on the input graph
and randomly initializes all the parameters. The number of
nodes in the graph is defined by problem size, and each
edge in the graph is translated to an rzz gate, which de-
composes into two cnot gates and one rz Gate. The depth
and gate counts of the QAOA circuit grow linearly with
problem size. Even if the input graph is fixed and the
repetitions of the variational form increase, the circuit’s depth
still grows linearly, making QAOA a very efficient quantum
algorithm [55].

The QAOA is a heuristic algorithm that gives better
approximations after every measurement and optimization
cycle. Although it has the potential to outperform certain
classical algorithms, the implementation of QAOA still heav-
ily depends on the topology of the input graph. Q-gen can
help researchers quickly explore the circuit structure of
QAOA under different input graphs.

N. VARIATIONAL QUANTUM EIGENSOLVER
The variational quantum eigensolver (VQE) can estimate the
minimum eigenvalue of a physical system represented by a
matrix. Since the current quantum hardware is not capable
of running deep QPE algorithms, the VQE is designed as an
alternative to efficiently approximate the solution with the
help of a classical optimizer [59]. The VQE has many prac-
tical applications in the fields of chemistry and physics. For
example, finding the ground state energy of molecules [61].

The implementation of the variational forms for VQE de-
pends on the specific system being simulated. Q-gen fully
utilizes Qiskit’s circuit library to give a wide variety of gen-
eration parameters. The choices of the single-qubits gates
for the initial mixing unitary are generated according to the
gates parameter, the entanglement pattern (full, linear, etc.)
is generated based on the entanglement parameter, and
the repeat parameter controls the number of repetitions
of the full variational form. Like the other variational algo-
rithms in Q-gen, the rotation angle of the gates can all be
specified or randomly generated.
Because the VQE algorithm in Q-gen is highly customiz-

able, it enables explicit control of the percentage of single-
qubit and two-qubit gates, which produces circuits with
vastly different structures.

O. VARIATIONAL QUANTUM CLASSIFIER
The variational quantum classifier (VQC) is the quantum
version of the traditional neural network classifier [62]. By
embedding classical data into a quantum feature map circuit,
a variational form can be trained on this feature map just
like training the classical neural networks. ML is another
promising application of variational quantum algorithms. As
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FIGURE 6. Q-gen quantum circuit dataset statistics and example circuit of the (a) quantum approximate optimization algorithm (QAOA), the
(b) variational quantum eigensolver (VQE), and the (c) variational quantum classifier (VQC). Circuit width/depth is the number of qubits/steps in the
circuit. U/CX/Measure means Unitary (single-qubit) gate/CNOT (two-qubit) gate/measurement gate. For QAOA, the problem size is the number of
nodes in the input graph. For both VQE and VQC, the main generation parameter is the width of the circuit. These algorithms have high variability, which
expresses linear and exponential growth patterns depending on the generation parameters. The circuit visualizations indicate that the variational circuit
depends heavily on arbitrary rotation gates.

the datasets and models get larger, quantum computing can
potentially make training more efficient by utilizing the ex-
ponentially growing parameter space represented by more
entangled qubits.
Q-gen implements a common VQC circuit using the

ZZFeatureMap and the RealAmplitudes variational
form [63]. The repetition number of the feature map and the
variational form can be separately controlled, depending on
the dataset embedding design and the number of trainable pa-
rameters. In addition, different feature maps provided by the
Qiskit library can be easily swapped in, like thePauliFea-
tureMap and ZFeatureMap [64]. Compared with QAOA
and VQE circuits in Q-gen, VQC circuits contain signifi-
cantly more cnot gates due to the entanglement introduced
by the feature map circuit, as shown in Fig. 6.

By taking advantage of the striking similarities between
the connected neurons and the entangled qubits, the VQC
demonstrates how quantum computing can augment classi-
cal computing tasks. The circuit generation parameters in
Q-gen can be tuned similarly to the traditional configuration
variables like learning rate and batch size.

IV. Q-GEN: EVALUATION AND THE CIRCUIT DATASET
In this section, we evaluate the characteristics and functional-
ity of Q-gen by putting it to work.We explain the architecture
and design philosophy of our quantum circuit dataset, which
is generated by utilizing the plentiful generation parameters
provided by Q-gen.

A. HIERARCHICAL ALGORITHM SYSTEM
The most intuitive way to demonstrate Q-gen’s capability as
a circuit generator is to show that it can easily generate a
large variety of quantum circuits. We realized that organiz-
ing the generated circuits into a well-structured dataset and
providing open-source access can greatly assist studies that
require large-scale quantum circuit testing and benchmark-
ing, or even push new research directions on AI + Quantum.

However, the quantum algorithms provided by Q-gen have
different structures and targeted applications. A good im-
plementation of Grover’s algorithm should find the marked
state in fewer iterations. In contrast, a good quantum key
distribution protocol should protect the message from the
attacker with minimum encryption overhead. The complex
relationships between different quantum algorithms affect
how researchers evaluate and optimize the performance of
their novel projects. For example, a circuit optimization tool
aimed at reducing the number of cnot gates should not pick
the Deutsch–Jozsa algorithm or the quantum key distribution
algorithm for testing, due to their low utilization rate of cnot
gates. For studies aimed at improving the QFT algorithm, it
is also valuable to test its performance on the QPE algorithm,
because it is a direct extension of the QFT algorithm.
Therefore, to facilitate understanding and promote ef-

fective use of all the available algorithms in Q-gen, we
summarize them into an organized system with five algo-
rithm categories based on their theoretical origin, circuit
structure, and targeted application. The complete Q-gen al-
gorithm system is visualized in Fig. 7; we hope this algo-
rithm system can offer a clear and direct introduction for new
researchers to dive into quantum computing.

1) QUANTUM QUERY ALGORITHMS
The quantum query algorithms include the Deutsch–Jozsa
algorithm, the Bernstein–Vazirani algorithm, and Simon’s
algorithm. They try to query a “closed box” function (oracle)
to find its hidden information. The hidden information of
the oracle can be randomly generated based on problem
size or specified as a bit string. Since most of the quantum
computation happens inside the oracle, the oracle’s complex-
ity directly affects the generated circuit’s complexity.

2) QFT ALGORITHMS
The QFT algorithms include QFT, QPE, and Shor’s al-
gorithm. Similar to the classical Fourier transform where
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FIGURE 7. Complete Q-gen algorithm system illustration. The algorithm’s complexity rating is designed to be compared vertically within its category
instead of horizontally across different algorithm categories. To help form the connection between different algorithms, we include some generalized
quantum computing problems, indicated by the dashed circles. The connections are gathered from various textbooks, lecture notes, and scientific
papers [3], [57], [58], [59], [60].

functions are transferred from the time domain to the fre-
quency domain, the QFT converts the quantum states from
the computational basis to the Fourier basis. They are some
of themost important algorithms in quantum computing, pro-
viding fundamental building blocks for many other quantum
applications.

3) QUANTUM SEARCH ALGORITHMS
The quantum search algorithms include Grover’s algo-
rithm, quantum counting, and quantum walk algorithm. The
quantum search algorithms can accelerate search problems
on datasets with no predefined classical data structures. The
quantum search circuits still involve an oracle like the quan-
tum query algorithms, but this oracle represents the search
space, followed by additional operations according to spe-
cific algorithms. In general, as the search space grows, the
circuit complexity of the generated circuits grows exponen-
tially in terms of gate number/circuit depth.

4) QUANTUM COMMUNICATION ALGORITHMS
The quantum communication algorithms include quantum
key distribution, superdense coding, and quantum tele-
portation. The quantum communication algorithms utilize
different merits of quantum channels to securely and rapidly
transfer information. Q-gen generates the full quantum com-
munication process from the sender to the receiver. Because
the message should remain protected during the process, be-
sides demonstrating the functionality of quantum communi-
cation, the generated circuits can also be used to benchmark
the fidelity of the quantum hardware.

5) VARIATIONAL QUANTUM ALGORITHMS
The variational quantum algorithms include the QAOA, the
VQE, and the VQC. Variational quantum algorithms com-
bine quantum computing with classical optimization. The
quantum circuit is constructed to solve for a specific ground
state of a given system, and a classical optimizer iteratively
optimizes the angles of the rotation gates involved in the
circuit. Note that a variational quantum circuit is often called
a parameterized quantum circuit, which refers to the param-
eterized quantum gates involved in the circuit. Q-gen’s pa-
rameterization refers to the high-level generation parameters
of a quantum algorithm.

B. QUANTUM CIRCUIT DATASET DESIGN
The algorithms under one Q-gen category share similar char-
acteristics, like circuit structure and measurement output pat-
tern. Given the high variability of the available generation
parameters, it is possible to generate some outlier circuits that
have unrealistic gate arrangements. Still, when creating the
Q-gen dataset, we try to keep the parameters reasonable so
that the generated circuits are close to practical application
circuits. The generation details for each algorithm category
are explained as follows.

1) The quantum query circuits are relatively easy to gen-
erate in terms of average generation time and circuit
size. All the oracles in the three algorithms are set
to contain random output states, and the oracle of the
Deutsch–Jozsa algorithm is always set to be a constant
oracle.
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TABLE 1. Q-Gen Dataset Generation Summary

2) The QFT circuits are significantly harder to generate.
The QFT circuits are generated as inverse QFT and
measurement gates to produce verifiable histograms.
The QPE circuits have fixed input initialization of θ =
1/8, the same phase angle as the T gate. The input
number of QFT circuits and the initial guess (a) of
Shor’s circuits are both randomly generated.

3) The quantum search circuits take the longest average
time to generate in Q-gen if normalized to the same
circuit width. Due to the exponentially growing gate
count, it also produces the deepest circuits compared
to other algorithm categories. For Grover’s algorithm
and the quantum walk algorithm, we specify the num-
ber of solutions as 2(problemsize−2) so that the num-
ber of iterations will always be 1. Although the num-
ber of solutions is fixed, the individual solution state
inside the oracle is still randomly picked. The quantum
counting circuits always generate the same number
of counting qubits and searching qubits according to
problem size.

4) The quantum communication circuits have the sim-
plest generation parameters in Q-gen. The quantum
key distribution circuits contain interceptions from the

attacker, the superdense coding circuits encode half
of the qubits, and the quantum teleportation circuits
randomly initialize the states to teleport.

5) The variational quantum algorithms can produce cir-
cuits with vastly different structures depending on the
generation parameters. The QAOA circuits are gener-
ated with a cyclic input graph, and the variational form
of the VQE circuits is generated with ry/rz gates and
full entanglement. The repetition number of the varia-
tional form for the VQE and VQC circuits is fixed to 1.
For all the circuits in this category, the rotation angles
of the single-qubit gates are randomly generated.

The minimum problem size is set to 2 for every algo-
rithm (except Shor’s algorithm) becausemost of them require
at least two qubits; it is then incremented by 1 for each
generation step until the circuit gets too large for generation
or simulation. For Shor’s algorithm, the circuit structure is
decided by the input number to be factored. We generated
Shor’s circuit with a list of problem size from a subset
of odd composite numbers, up to 123. Table 1 summarizes
the full generation details and the gate statistics of the Q-gen
quantum circuit dataset.
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FIGURE 8. Simulation times for the Q-gen database circuits using two Xeon Gold 6354 CPUs and the Nvidia A100 GPU. The x-axis shows the number of
qubits and the number of classical bits (measurements) in the circuit. For Shor’s algorithm, the 20 ticks represent 20 different input numbers N being
solved: N = [15, 21, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 105, 111, 115, 119, 123]. The simulation time exhibits an exponential growth pattern
for most algorithms when the number of qubits increases. For quantum query algorithms, due to their simple structure indicated by the gate statistics in
Table 1, the simulation time will need much more qubits to show exponential growth.

C. ALGORITHM COMPLEXITY RATING
We want to provide each circuit in the Q-gen dataset with
its corresponding noise-free output to form a straightforward
input–output pair, either inmeasurement count or state vector
format. This enables researchers to utilize the Q-gen dataset
without worrying about the simulation overhead of large cir-
cuits, which can easily take hours to days. For example, in the
use case where the user wants to train an ML model to per-
form tasks related to quantum circuits, our dataset provides
not only the high-level circuits but also their corresponding
simulation results. Therefore, the user does not need to run
simulations by themself on these circuits, effectively reduc-
ing their overall simulation workload.

For circuit simulation, we obtain the measurement count
using the Qiskit Aer simulator running on a rack server with
two Xeon Gold 6354 processors and the Nvidia A100 GPU,
with 512 GB of shared RAM and 80 GB of graphics memory.
The simulation times for all the Q-gen dataset circuits are
plotted in Fig. 8. For most algorithms, the simulation time
difference between GPU and CPU is negligible. However,
the CPU simulation of Shor’s algorithm and quantum tele-
portation quickly ran out of memory. The GPU can signifi-
cantly outperform the CPU on these two algorithms thanks
to the cuQuantum SDK optimization. The state vector sim-
ulations are performed on the Qulacs simulator due to its
efficiency when running large quantum circuits. The circuits
are converted from Qiskit to Qulacs format with the Naniwa
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converter, and the simulation results can be cross-verified
with the state vector output from the Aer simulator.
Another addition to complement the usability of the Q-gen

quantum circuit dataset is the algorithm complexity rating,
denoted by the star (�) symbols in Fig. 7. We define an
algorithm’s complexity based on its simulation time, gener-
ation time, and gate statistics. Note that this rating should
not be confused with the circuit complexity mentioned in
Section III. A quantum circuit’s complexity can be quanti-
fied regardless of its application, most commonly using the
circuit depth. However, it is hard to come up with a com-
prehensive and uniform metric to define the complexity of a
quantum algorithm across all the fields of quantum comput-
ing. Under the Q-gen algorithm category system, the indi-
vidual algorithms within the same category have the same
application and similar circuit structure, so we assign the
ratings independently for each algorithm category. This gives
researchers a clear hierarchical view of the complexity of the
quantum algorithms and helps software developers quickly
grasp the coding difficulty if they want to commit new algo-
rithms to the Q-gen algorithm system.

V. DISCUSSION AND OUTLOOK
In this section, we discuss the potential applications of the
Q-gen circuit generator and the circuit dataset. We also give
an outlook on the future directions of the Q-gen project.

A. PRACTICAL APPLICATIONS
For ML applications, the size of the dataset can be expanded
depending on the computing power offered by the user. On
the other hand, since we provide high-level circuits in our
dataset, users can utilize their own transpiler to generatemore
low-level circuits based on their specific learning objectives
and optimization needs. For example, tuning the number of
SWAP insertions or translating the circuits into different ba-
sis gate sets. Furthermore, since the original computation of
the high-level circuit should be preserved during transpila-
tion, our noise-free simulation results remain true to all low-
level circuits produced. They can be used as a “truth label”
to compare and analyze different transpilation techniques.
For example, users can run their low-level circuits and com-
pare their outputs with the Q-gen dataset to verify that their
transpilation is accurate. Even more creatively, if the goal
is to develop an approximate transpiler that trades off some
measurement accuracy for lower gate error rates, our dataset
can be used as a golden reference to calculate how much the
approximated output differs from the noise-free output.
Q-gen can generate circuits that solve specific problems

depending on the input. For example, the user can supply any
oracle to Grover’s algorithm or define any variational form
for the VQE/VQC algorithm. Q-gen will then generate the
full quantum circuit as the solution to the user’s input prob-
lem. This ability to create problem–circuit pairs can be used
to train an ML-based circuit generator. There are also many
other practical applications with the Q-gen circuit dataset.
For instance, train large models that can analyze the noise

characteristics of real quantum hardware, or verify the ac-
curacy of the results of circuit cutting/knitting where a large
circuit is decomposed into smaller circuits and run
separately.

B. FUTURE IMPROVEMENTS
Currently, Q-gen generates high-level circuits that do not
have hardware-specific generation options like setting a re-
stricted gate set. Providing some control over how a given
circuit would transpile within a given hardware environment
can be a useful feature. However, most of the hardware-
related transpilation parameters are unfortunately proprietary
and not easily accessible to us. As we continue to refine
the core generation functions of Q-gen, we will be gradu-
ally adding more generation options to the project as more
open-source hardware data become available.
Although Q-gen does not limit the qubit number of the

generated circuit, simulating extremely large circuits is still a
resource-expensive task. Our work presents the initial dataset
to kick-start the development of the Q-gen project. As more
efficient simulating methods are investigated, we will gener-
ate and simulate more complex circuits and add those results
to the dataset as soon as they are available.
In the current stage of quantum computing where the

main objective for hardware is to reduce error and achieve
scalability, we believe it is more practical to set the tar-
geted application of Q-gen as generating high-level circuits
that can support the classical design and optimization meth-
ods for quantum algorithms. Nevertheless, quantum hard-
ware is experiencing exploding development. To add more
possibilities to the Q-gen dataset, we also plan to add more
outputs from real quantum hardware.

VI. CONCLUSION
In this work, we present the Q-gen quantum circuit genera-
tor to intuitively and efficiently generate practical quantum
circuits. We motivate this work by showing that a compre-
hensive quantum circuit generator can accelerate the ad-
vancement of current NISQ applications and may become
an integral part of the future quantum computing workflow.
Q-gen provides 15 practical quantum algorithms with tai-
lored generation parameters, offering a convenient tool for
researchers and developers with any background level to
quickly start interacting with quantum circuits. We demon-
strate the functionality of Q-gen by generating a large quan-
tum circuit dataset utilizing all the available generation pa-
rameters, and we evaluate the structure of the generated cir-
cuits, showing a wide coverage of different circuit properties
including circuit size and gate counts. Based on the circuit
dataset and its simulation results, we further improve the
usability of Q-gen by defining a hierarchical quantum al-
gorithm system, presenting a streamlined starting point for
quantum computing research.
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VII. DATA AND CODE AVAILABILITY
The source code of the Q-gen quantum circuit generator is
hosted on GitHub [65]. We provide the generation functions
for every algorithm, as well as the dataset generation pro-
gram to directly generate a full quantum circuit dataset. An
example of generating a Deutsch–Jozsa circuit is given as
follows:

We host all the supplementary data related to the Q-gen
dataset and the generator on the dedicated GitHub Wiki
page [39]. We provide high-quality circuit visualizations,
as well as simulation result plots showing the measurement
counts. We will also update other helpful data related to the
dataset as soon as they become available. For example, the
output and the transpilations of our Q-gen dataset circuits
running on real IBM Quantum processors [66].
The Q-gen quantum circuit dataset is hosted on Kaggle

[67]. We provide the Qiskit/Qulacs circuits and the simula-
tion result files. Examples of loading the circuit and simula-
tion result are given as follows:
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